Minimal violations of the Snoussi-condition.

Ling Sun

20/03/2017

Ling Sun

Minimal violations of the Snoussi-condition.

20/03/2017 1 / 12

▲ 同 ▶ → 三 ▶

Review

- **1** Model, M = (I, K), 3 model conditions.
 - .2 Equivalent models.
 - .3 ASTG, T = (X, S), the dynamics generated by a model M.
 - .4 3 u-row types.
 - .5 Isomorphic groups of *u*-rows.
 - .6 Extremal states and extremal rows.
- Algorithms:

< 回 ト < 三 ト < 三

The Snoussi-condition in an interaction

Definition

An interaction $(u, v) \in E$ of a model M = (I, K) satisfies the Snoussi-condition, if

$$\forall \omega \subseteq \operatorname{Pre}(v) \setminus \{u\}, \ K(v, \omega) \le K(v, \omega \cup \{u\}).$$

Definition

The number of violations of Snoussi-condition in all interactions, termed as *s*:

$$s := \sharp\{(u, v, \omega) \mid (u, v) \in E, \omega \subseteq \operatorname{Pre}(v) \setminus \{u\} \land K(v, \omega) > K(v, \omega \cup \{u\})\}.$$

Snoussi1989, Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach, Dynamics and Stability of Systems.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

(On ω -side of u) (Lorenz2011)

• Given $u \in V$, $\omega \subseteq Pre(u)$, we say that $a \in \{0, \ldots, max_u\}$ lies on the ω -side of u if there exists a state $x \in X$, with $x_u = a$ and $Res_u(x) = \omega$.

< 回 > < 三 > < 三 >

Does $K(v_1, \omega)$ lie on ω -side of v_1 ?

Does $K(v_2, \omega)$ lie on ω -side of v_2 ?

v	0	300
$\{v_2\}$	2	yes
$\{v_1\}$	2	no
$\{v_1, v_2\}$	2	yes

< 回 > < 三 > < 三 >

How to decide whether $K(u, \omega)$ lie on ω -side of u? Remark

 $K(u, \omega)$ lies on ω -side of u in the following two cases:

- if $u \in \omega$ and $K(u, \omega) \geq \vartheta(u, u)$;
- if $u \notin \omega$ and $K(u, \omega) < \vartheta(u, u)$.

Question: for each $\omega \subseteq Pre(v_2)$, does $K(v_2, \omega)$ lie on the ω -side of v_2 ? Answer: $\omega \quad | v_2 \in \omega \mid K(v_2, \omega) \mid \text{vs } \vartheta(v_2, v_2) = 2 \mid \text{lies on } \omega\text{-side}$

swer:	ω	$v_2 \in \omega$	$K(v_2,\omega)$	vs $\vartheta(v_2, v_2) = 2$	lies on ω -side?
	Ø	∉	0	<	yes
	$\{v_2\}$	\in	2	=	yes
	$\{v_1\}$	∉	2	=	no
	$\{v_1, v_2\}$	\in	2	=	yes
				4 0	

20/03/2017 7 / 12

To find a logical parameter function satisfying the Snoussi-condition as much as possible, the following lemma [1] is introduced.

Lemma

[1] Given a model M = (I, K), the logical parameter function K^S is defined in the following way:

• For all $u \in V$, for all $\omega \subseteq \operatorname{Pre}(u)$: if $K(u, \omega)$ lies on the ω side from u

$$K^S(u,\omega) := K(u,\omega)$$

• For all $u \in V$, for all $\omega \subseteq Pre(u)$: if $K(u, \omega)$ does not lie on the ω side from u

$$K^{S}(u,\omega) := \begin{cases} \vartheta(u,u) - 1 & \varepsilon(u,u) = +, \ u \in \omega \\ \vartheta(u,u) & \varepsilon(u,u) = +, \ u \notin \omega \\ 0 & \varepsilon(u,u) = -, \ u \notin \omega \\ max_{u} & \varepsilon(u,u) = -, \ u \in \omega \end{cases}$$

If in $M^S = (I, K^S)$ there is a violation of the Snoussi-condition in component u for some $\omega \subseteq \varsigma \subseteq V$, then the same is true in all its isomorphic models.

Example.

 x_u t-10 t. max_u $x \in \tau^u$ $\operatorname{Res}(u, x)$ ω ς K(u, Res)if K(u, Res) does not lie one Res-side of u $K(u,\omega) > t-1$ $K(u, \omega) < t$ $\varepsilon(u, u) = +$ $u \notin \omega$ $u \in \varsigma$ $K^S(u, Res)$ $K^S(u,\omega) = t$ $K(u,\omega) = t - 1$ $\varepsilon(u, u) =$ $u \in \omega$ $u \notin \varsigma$ $K^S(u, Res)$ $K^S(u,\omega) = max_u$ $K(u,\omega) = 0$

Figure: Illustration of the Lemma for K^S . t is supposed to be $\vartheta(u, u)$.

References

Discussion about the simulation of:

- From model to ASTG.
- Ø Model conditions checking: observability condition and Snoussi-condition.
- Finding attractors of an ASTG.

- B- 6-

Algorithms

Algorithm *VisibilityModel*. The following sub-tasks are included.

- detecting *u*-row types,
- Algorithm LogicalParameter,
- Algorithm ActivityLevel,
- Algorithm Observability-Snoussi-Model. With similar sub-tasks.

< 回 > < 三 > < 三 >