
Prof. Dr. Alexander Bockmayr,
Prof. Dr. Oliver Serang,
Christopher Pockrandt

October 19, 2015

Algorithms - Programming Exercices

WS 2015/16

Exercise 1
Due date: 31.10.2015 until 11 pm.

Shortest paths

1. Implement Dijkstra’s algorithm on a graph G = (V,E) using a minimum priority
queue. You can find the pseudocode of the algorithm and some additional explanation
in the svn https://svn.imp.fu-berlin.de/agbio/algorithms/WS15/materials/

exercise1/. You can use the std::priority queue provided by the STL (http:
//www.cplusplus.com/reference/queue/priority_queue/). Additional test data is
accessible from the svn (https://svn.imp.fu-berlin.de/agbio/algorithms/WS15/
data/).

2. The program shall be submitted as a single source file with the name exercise1.cpp

in your group folder of the svn. (Note: make sure all group members have read/write
access to that folder.)

3. Together with your program you have to provide a short application note (1-2 DIN-A4
pages; pdf) describing the implementation and an evaluation of the runtimes.

4. The due date is Saturday 31st of October 2015 until 11 pm at the latest. All versions
submitted later than this time stamp won’t be assest.

5. The program shall run on a linux pool machine (see the wiki for additional information
http://www.mi.fu-berlin.de/w/ABI/ProgrammingExercisesWS15).

6. The compiler flags shall be set to -pedantic -Wall -ansi -O3.

Requirements of your program:

• Input:

1. The graph G = (V,E) in form of the Trivial Graph Format (TGF) (see below for
more information).

2. The id of the source node s (integer).

https://svn.imp.fu-berlin.de/agbio/algorithms/WS15/materials/exercise1/
https://svn.imp.fu-berlin.de/agbio/algorithms/WS15/materials/exercise1/
http://www.cplusplus.com/reference/queue/priority_queue/
http://www.cplusplus.com/reference/queue/priority_queue/
https://svn.imp.fu-berlin.de/agbio/algorithms/WS15/data/
https://svn.imp.fu-berlin.de/agbio/algorithms/WS15/data/
http://www.mi.fu-berlin.de/w/ABI/ProgrammingExercisesWS15

3. The id of the target node t (integer).

• Your program shall be called as follows:
./exercise1 graph.tgf sourceId targetId

• The program shall output the length of the shortest path in the first line followed by
the identifiers of the nodes from s to t in the second line and all separated by a single
whitespace, e.g.,
host$./exercise1 test.tgf 0 5

678.9

0 1 2 3 4 5

• If no valid path exists the program shall output the single information no path, e.g.,
host$./exercise1 test.tgf 5 0

no path

As input format we use the Trivial Graph Format (TGF) which is defined as follows:

0 someString0
1 someString1
2 someString2
3 someString3
#
0 1 weight
1 2 weight
1 3 weight
3 2 weight

First all node identifier (int) and associated node names (arbitrary strings - we limit to single
words) are listed. After a single line containing only a single # symbol all directed edges are
listed with their weights (double).

IMPORTANT: The generated output must be in the form as described above. Don’t use
any other formatting and don’t print any debug information in the final version of your
submitted program!
You can score 4 pts.. 3 pts. for the program and 1 pt. for the application note.
3 pts. = The program compiles and runs successfully with no errors.
2 pts. = The program compiles and contains minor errors.
1 pt. = The program compiles and contains some critical errors.
0 pts. = The program doesn’t compile or does not meet the requirements.

