Prof. Dr. Knut Reinert, Prof. Dr. Alexander Bockmayr, Annika Röhl

January 26, 2017

Deadline: February 2, 2017, 11:45 am

Optimization

WS 2016/17

Exercise 5

1. Lagrangean Relaxation I

Consider the following problem

min
$$2x_1 - 3x_2$$

w.r.t. $3x_1 - 4x_2 \le -6$
 $-x_1 + x_2 \le 2$
 $6x_1 + 2x_2 \ge 3$
 $6x_1 + x_2 \le 15$
 $x_1, x_2 \ge 0$
 $x_1, x_2 \in \mathbb{Z}$

- (a) Draw the corresponding polytope and determine graphically the optimal solution Z_{IP} of the original problem and Z_{LP} , the solution of the LP-relaxation.
- (b) Now apply lagrangean relaxation by relaxing the first inequality. Draw the polytope of the relaxed ILP. Determine the set X of feasible solutions for the relaxed problem.
- (c) The new objective function is then:

$$Z(P) = \min_{(x_1, x_2) \in X} 2x_1 - 3x_2 + p(6 + 3x_1 - 4x_2)$$

Calculate $Z_D = \max_{p\geq 0} Z(p)$ and compare this value to Z_{IP} and Z_{LP} . (To obtain Z_D , draw the graphs of the function $f(p) = 2x_1 - 3x_2 + p(-6 - 3x_1 + 4x_2)$ for all $(x_1, x_2) \in X$. Do this by hand.)

(d) repeat a-c for the objective functions $-x_1 + x_2$ and $-x_1 - x_2$ and compare Z_{LP} , Z_D , and Z_{IP} . To draw the graphs of the functions f(p) use MATLAB.

2. Lagrangean Relaxation II

Prove Lemma 1 (see script page 4001) stating that (in case of a minimization problem) if $\lambda \geq 0$, then $Z(\lambda) \leq Z_{IP}$, where Z_{IP} is the optimal value of an original ILP and $Z(\lambda)$ is the optimal value of the relaxed problem for a given value of the Lagrangean multiplier λ .

3. MILP

Given a metabolic network: a stoichiometric matrix $S \in \mathbb{R}^{m \times n}$, the set of indices corresponding to the irreversible reactions Irr, and lower and upper bounds for the fluxes of the reactions, lb and ub respectively.

Build a Mixed Integer Linear Program (MILP) such that:

- the system is in steady state
- the fluxes respect the lower and upper bounds
- the number of active reactions (reactions which carry flux) is minimal
- the trivial flux vector (v=0) is not a feasible solution

Thus we search for a flux vector v s.t. the number of entries with $v_i \neq 0$ is minimal.

- (a) suppose that all reactions are irreversible.
- (b) there exists reversible reactions.

(*Hint*: To minimise over the number of active reactions, binary variables are needed. For each v_i there has to exist a binary a_i which indicates that v_i carries flux or not. Thus: $a_i = 0 \Leftrightarrow v_i = 0$. Try to formulate " \Leftrightarrow " with the help of linear constraints.)