Prof. Dr. Knut Reinert, Prof. Dr. Alexander Bockmayr, Annika Röhl

> January 12, 2017 Deadline: January 19, 2017, 11:45 am

Optimization

WS 2016/17

Exercise 3

1. (POLYMAKE)

Install the POLYMAKE package (or use the online version) and read the documentation (https://polymake.org/doku.php). (You will also find POLYMAKE under /import.)

Given the following ILP:

max	x_1	+	x_2	+	x_3	+	x_4
w.r.t.							
	x_1	+	x_2	+	x_3	\leq	2
	x_1	+	x_2	+	x_4	\leq	2
			x_3	+	x_4	\leq	1
					x	\geq	0

 x_1, x_2, x_3, x_4 integral

- (a) Solve the LP relaxation with a solver using MATLAB.
- (b) Generate all feasible integral points using the command LATTICE_POINTS.
- (c) Transform the point representation into the halfspace representation using the command FACETS.
- (d) Solve the resulting linear program again with your lp solver.
- (e) What do you notice? Explain your observations.

(Hand in screen shots or a .txt file showing your commands)

2. Critical Mixed Cycles

Prove the following lemma (see lecture script):

A subset $T \subseteq E$ is a trace, if and only if G' = (V, T, H) does not contain a critical mixed cycle.

3. n-Queens-Problem

Write down an ILP for the so called *n*-queens-problem:

Place as much queens as possible on a $n \times n$ chess board such that no two queens interfere. Thus:

- In each vertical line ...
- In each horizontal line ...
- $\bullet\,$ In each diagonal line \ldots

... is only one queen allowed