Farkas Lemma

Theorem. Suppose $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^{m}$.

1. The system $A x \leq b$ has no solution $x \in \mathbb{Q}^{n}$ if and only if there exists $u \in \mathbb{Q}^{m}, u \geq 0$ such that $u^{T} A=0$ and $u^{T} b=-1$.
2. If $A x \leq b$ is solvable, then an inequality $c^{T} x \leq \delta$ with $c \in \mathbb{Q}^{n}$ and $\delta \in \mathbb{Q}$ is satisfied by all rational solutions of $A x \leq b$ if and only if there exists $u \in \mathbb{Q}^{m}, u \geq 0$ such that $u^{T} A=c^{T}$ and $u^{T} b \leq \delta$.

Rules for reasoning with linear inequalities:

$$
\begin{aligned}
& \text { nonneg_lin_com: } \frac{A x \leq b}{\left(u^{T} A\right) x \leq u^{T} b} \text { if }\left\{\begin{array}{l}
u \in \mathbb{Q}^{m}, \\
u \geq 0
\end{array}\right. \\
& \text { weak_rhs: } \frac{a^{T} x \leq \beta}{a^{T} x \leq \beta^{\prime}} \text { if } \beta \leq \beta^{\prime}
\end{aligned}
$$

Duality

$$
\begin{align*}
\text { Primal problem: } \quad z_{P} & =\max \left\{\mathbf{c}^{\top} x \mid \quad A x \leq b, \quad x \in \mathbb{R}^{n}\right\} \tag{P}\\
\text { Dual problem: } \quad w_{D} & =\min \left\{b^{T} u \mid \quad A^{T} u=\mathbf{c}, \quad u \geq 0\right\} \tag{D}\\
& =\min \left\{u^{T} b \mid \quad u^{T} A=c^{T}, \quad u \geq 0\right\}
\end{align*}
$$

Note: The dual computes a smallest upper bound for the objective function of the primal, which is of the form $c^{T} x=u^{T} A x \leq u^{T} b=\delta$ (cf. Farkas Lemma).

Note: The dual of the dual is the primal.

> Duality: General form

	(P)	(D)	
\max	$c^{T} x$		\min
w.r.t.	$A_{i *} x \leq b_{i}, \quad i \in M_{1}$	w.r.t	$b_{i} \geq 0$,
	$A_{i *} x \geq b_{i}, \quad i \in M_{2}$	$i \in M_{1}$	
	$A_{i *} x=b_{i}, \quad i \in M_{3}$	$u_{i} \leq 0$,	$i \in M_{2}$
	$x_{j} \geq 0, \quad j \in N_{1}$	u_{i} free,	$i \in M_{3}$
	$\left.x_{j} \leq 0, \quad j \in N_{2}\right)^{T} u \geq c_{j}, \quad j \in N_{1}$		
	x_{j} free, $\quad j \in N_{3}$	$\left(A_{* j}\right)^{T} u \leq c_{j}, \quad j \in N_{2}$	
		$\left(A_{* j}\right)^{T} u=c_{j}, \quad j \in N_{3}$	

primal	\max	\min	dual
constraints	$\leq b_{i}$	≥ 0	
	$\geq b_{i}$	≤ 0	variables
	$=b_{i}$	free	
variables	≥ 0	$\geq c_{j}$	
	≤ 0	$\leq c_{j}$	constraints
	free	$=c_{j}$	

Duality theorems

- Weak duality: If x^{*} is primal feasible and u^{*} is dual feasible, then

$$
c^{T} x^{*} \leq z_{P} \leq w_{D} \leq b^{T} u^{*}
$$

- Strong duality
- If (P) and (D) both have feasible solutions, then both programs have optimal solutions and the optimum values of the objective functions are equal.
- If one of the programs (P) or (D) has no feasible solution, then the other is either unbounded or has no feasible solution.
- If one of the programs (P) or (D) is unbounded, then the other has no feasible solution.
- Only four possibilities:

1. z_{P} and w_{D} are both finite and equal.
2. $z_{P}=+\infty$ and (D) is infeasible.
3. $w_{D}=-\infty$ and (P) is infeasible.
4. (P) and (D) are both infeasible.

Maximum flow and duality

- Primal problem

$$
\begin{array}{ccl}
\max & \sum_{e: \text { source }(e)=s} x_{e}-\sum_{e: \text { arget }(e)=s} x_{e} \\
\text { s.t. } & \sum_{e: \text { arget }(e)=v} x_{e}-\sum_{e: \text { sourcee }(e)=v} x_{e}=0, & \forall v \in V \backslash\{s, t\} \\
& 0 \leq x_{e} \leq c_{e}, & \forall e \in E
\end{array}
$$

- Dual problem

$$
\begin{array}{lll}
\min & \sum_{e \in E} c_{e} y_{e} & \\
& & \\
\text { s.t. } & z_{w}-z_{v}+y_{e} \geq 0, \quad \forall e=(v, w) \in E \\
& z_{s}=1, z_{t}=0 & \\
& y_{e} \geq 0, \quad \forall e \in E
\end{array}
$$

Maximum flow and duality

- Let $\left(y^{*}, z^{*}\right)$ be an optimal solution of the dual.
- Define $S=\left\{v \in V \mid z_{v}^{*}>0\right\}$ and $T=V \backslash S$.
- (S, T) is a minimum cut.
- Max-flow min-cut theorem is a special case of linear programming duality.

Complexity of linear programming

Theorem (Khachiyan 79) The following problems are solvable in polynomial time:

- Given a matrix $A \in \mathbb{Q}^{m \times n}$ and a vector $b \in \mathbb{Q}^{m}$, decide whether $A x \leq b$ has a solution $x \in \mathbb{Q}^{n}$, and if so, find one.
- (Linear programming problem) Given a matrix $A \in \mathbb{Q}^{m \times n}$ and vectors $b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}$, decide whether $\max \left\{c^{T} x \mid A x \leq b, x \in \mathbb{Q}^{n}\right\}$ is infeasible, finite, or unbounded. If it is finite, find an optimal solution. If it is unbounded, find a feasible solution x_{0}, and find a vector $d \in \mathbb{Q}^{n}$ with $A d \leq 0$ and $c^{T} d>0$.

Polynomial algorithms for linear programming

- Ellipsoid method (Khachiyan 79)
- Interior point methods (Karmarkar 84)

Complexity of constraint solving: Overview

Satisfiability	over \mathbb{Q}	over \mathbb{Z}	over \mathbb{N}
Linear equations	polynomial	polynomial	NP-complete
Linear inequalities	polynomial	NP-complete	NP-complete

Satisfiability	over \mathbb{R}	over \mathbb{Z}
Linear constraints	polynomial	NP-complete
Non-linear constraints	decidable	undecidable

References

- J. Matousek, B. Gärtner: Understanding and using linear programming, Springer, 2007.
- B. Kolman and R. E. Beck: Elementary linear programming with applications (Second Edition), Elsevier, 1995, http://www.sciencedirect.com/science/book/9780124179103
- A. Schrijver: A course in combinatorial optimization, Chap. 2, CWI, Feb. 13, http://homepages.cwi. nl/~lex/files/dict.pdf

