Farkas Lemma

Theorem. Suppose $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^m$.

- 1. The system $Ax \le b$ has no solution $x \in \mathbb{Q}^n$ if and only if there exists $u \in \mathbb{Q}^m$, $u \ge 0$ such that $u^T A = 0$ and $u^T b = -1$.
- 2. If $Ax \leq b$ is solvable, then an inequality $c^T x \leq \delta$ with $c \in \mathbb{Q}^n$ and $\delta \in \mathbb{Q}$ is satisfied by all rational solutions of $Ax \leq b$ if and only if there exists $u \in \mathbb{Q}^m$, $u \geq 0$ such that $u^T A = c^T$ and $u^T b \leq \delta$.

Rules for reasoning with linear inequalities:

nonneg_lin_com:
$$\frac{Ax \le b}{(u^T A)x \le u^T b}$$
 if $\begin{cases} u \in \mathbb{Q}^m, \\ u \ge 0 \end{cases}$

weak_rhs:
$$\frac{a^{ au}x\leq\beta}{a^{ au}x\leq\beta'}$$
 if $\beta\leq\beta'$

Duality

Primal problem:	ΖP	=	max{ c ^T <i>x</i>	$Ax \leq b$,	$x \in \mathbb{R}^n$	(P)
Dual problem:	w _D	=	$\min\{b^T u \mid$	$A^T u = \mathbf{c},$	$u \ge 0\}$	(D)
		=	$\min\{u^T b \mid$	$u^T A = c^T$,	$u \ge 0$	

Note: The dual computes a smallest upper bound for the objective function of the primal, which is of the form $c^T x = u^T A x \le u^T b = \delta$ (cf. Farkas Lemma).

Note: The dual of the dual is the primal.

Duality: General form (2)

(D)
$b^T u$
$u_i \geq 0, \qquad i \in M_1$
$u_i \leq 0, \qquad i \in M_2$
u_i free, $i \in M_3$
$(A_{*j})^T u \ge c_j, j \in N_1$
$(A_{*j})^T u \leq c_j, j \in N_2$
$(A_{*j})^T u = c_j, j \in N_3$

primal	max	min	dual
	$\leq b_i$	≥ 0	
constraints	$\geq b_i$	≤ 0	variables
	$= b_i$	free	
variables	\geq 0	$\geq c_j$	
	\leq 0	$\leq c_j$	constraints
	free	$= C_j$	

Duality theorems

• Weak duality: If x^* is primal feasible and u^* is dual feasible, then

$$c^T x^* \leq z_P \leq w_D \leq b^T u^*.$$

- Strong duality
 - If (P) and (D) both have feasible solutions, then both programs have optimal solutions and the optimum values of the objective functions are equal.
 - If one of the programs (P) or (D) has no feasible solution, then the other is either unbounded or has no feasible solution.
 - If one of the programs (P) or (D) is unbounded, then the other has no feasible solution.
- Only four possibilities:
 - 1. z_P and w_D are both finite and equal.
 - 2. $z_P = +\infty$ and (D) is infeasible.
 - 3. $w_D = -\infty$ and (P) is infeasible.
 - 4. (P) and (D) are both infeasible.

Maximum flow and duality

• Primal problem

$$\begin{array}{ll} \max & \sum_{e: \text{source}(e) = s} x_e - \sum_{e: \text{target}(e) = s} x_e \\ \text{s.t.} & \sum_{e: \text{target}(e) = v} x_e - \sum_{e: \text{source}(e) = v} x_e = 0, \quad \forall v \in V \setminus \{s, t\} \\ & 0 \leq x_e \leq c_e, \qquad \forall e \in E \end{array}$$

Dual problem

$$\begin{array}{ll} \min & \sum_{e \in E} c_e y_e \\ \text{s.t.} & z_w - z_v + y_e \geq 0, \quad \forall e = (v, w) \in E \\ & z_s = 1, z_t = 0 \\ & y_e \geq 0, \qquad \forall e \in E \end{array}$$

Maximum flow and duality (2)

- Let (y^*, z^*) be an optimal solution of the dual.
- Define $S = \{v \in V \mid z_v^* > 0\}$ and $T = V \setminus S$.
- (S, T) is a minimum cut.
- Max-flow min-cut theorem is a special case of linear programming duality.

Complexity of linear programming

Theorem (Khachiyan 79) The following problems are solvable in polynomial time:

- Given a matrix $A \in \mathbb{Q}^{m \times n}$ and a vector $b \in \mathbb{Q}^m$, decide whether $Ax \leq b$ has a solution $x \in \mathbb{Q}^n$, and if so, find one.
- (Linear programming problem) Given a matrix A ∈ Q^{m×n} and vectors b ∈ Q^m, c ∈ Qⁿ, decide whether max{c^Tx | Ax ≤ b, x ∈ Qⁿ} is infeasible, finite, or unbounded. If it is finite, find an optimal solution. If it is unbounded, find a feasible solution x₀, and find a vector d ∈ Qⁿ with Ad ≤ 0 and c^Td > 0.

Polynomial algorithms for linear programming

- Ellipsoid method (Khachiyan 79)
- Interior point methods (Karmarkar 84)

Complexity of constraint solving: Overview

Satisfiability	over \mathbb{Q}	over $\mathbb Z$	over ℕ
Linear equations	polynomial	polynomial	NP-complete
Linear inequalities	polynomial	NP-complete	NP-complete

Satisfiability	over ${\mathbb R}$	over $\mathbb Z$	
Linear constraints	polynomial	NP-complete	
Non-linear constraints	decidable	undecidable	

References

- J. Matousek, B. Gärtner: Understanding and using linear programming, Springer, 2007.
- B. Kolman and R. E. Beck: Elementary linear programming with applications (Second Edition), Elsevier, 1995, http://www.sciencedirect.com/science/book/9780124179103
- A. Schrijver: A course in combinatorial optimization, Chap. 2, CWI, Feb. 13, http://homepages.cwi. nl/~lex/files/dict.pdf