Basic solutions

- $A x \leq b, A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=n$.
- $M=\{1, \ldots, m\}$ row indices, $N=\{1, \ldots, n\}$ column indices
- For $I \subseteq M, J \subseteq N$ let $A_{I J}$ denote the submatrix of A defined by the rows in I and the columns in J.
- $I \subseteq M,|I|=n$ is called a basis of A iff $A_{I *}=A_{I N}$ is non-singular.
- In this case, $A_{l *}^{-1} b_{l}$, where b_{l} is the subvector of b defined by the indices in I, is called a basic solution.
- If $x=A_{l *}^{-1} b_{l}$ satisfies $A x \leq b$, then x called a basic feasible solution and I is called a feasible basis.

Algebraic characterization of vertices

Theorem

Given the non-empty polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$, where $\operatorname{rank}(A)=n$, a vector $v \in \mathbb{R}^{n}$ is a vertex of P if and only if it is a basic feasible solution of $A x \leq b$, for some basis l of A.
For any $c \in \mathbb{R}^{n}$, either the maximum value of $z=c^{T} x$ for $x \in P$ is attained at a vertex of P or z is unbounded on P.

Corollary

P has at least one and at most finitely many vertices.

Remark

In general, a vertex may be defined by several bases.

Simplex Algorithm: Algebraic version

- Suppose $\operatorname{rank}(A)=n$ (otherwise apply Gaussian elimination).
- Suppose l is a feasible basis with corresponding vertex $v=A_{l *}^{-1} b_{l}$.
- Compute $u^{T} \stackrel{\text { def }}{=} c^{T} A_{l *}^{-1}$ (vector of n components indexed by $\left.I\right)$.
- If $u \geq 0$, then v is an optimal solution, because for each feasible solution x

$$
c^{T} x=u^{T} A_{l *} x \leq u^{T} b_{l}=u^{T} A_{l *} v=c^{T} v .
$$

- If $u \nsupseteq 0$, choose $i \in I$ such that $u_{i}<0$ and define the direction $d \stackrel{\text { def }}{=}-A_{l *}^{-1} e_{i}$, where e_{i} is the i-th unit basis vector in \mathbb{R}^{l}.
- Next increase the objective function value by going from v in direction d, while maintaining feasibility.

Simplex Algorithm: Algebraic version (2)

1. If $A d \not \leq 0$, the largest $\lambda \geq 0$ for which $v+\lambda d$ is still feasible is

$$
\begin{equation*}
\lambda^{*}=\min \left\{\left.\frac{b_{l}-A_{l *} V}{A_{l *} d} \right\rvert\, I \in\{1, \ldots, m\}, A_{l *} d>0\right\} \tag{PIV}
\end{equation*}
$$

Let this minimum be attained at index k. Then $k \notin I$ because $A_{I *} d=-e_{i} \leq 0$.
Define $I^{\prime}=(I \backslash\{i\}) \cup\{k\}$, which corresponds to the vertex $v+\lambda^{*} d$.
Replace I by I^{\prime} and repeat the iteration.
2. If $A d \leq 0$, then $v+\lambda d$ is feasible, for all $\lambda \geq 0$. Moreover,

$$
c^{T} d=-c^{T} A_{l *}^{-1} e_{i}=-u^{T} e_{i}=-u_{i}>0
$$

Thus the objective function can be increased along d to infinity and the problem is unbounded.

Termination and complexity

- The method terminates if the indices i and k are chosen in the right way (such choices are called pivoting rules).
- Following the rule of Bland, one can choose the smallest i such that $u_{i}<0$ and the smallest k attaining the minimum in (PIV).
- For most known pivoting rules, sequences of examples have been constructed such that the number of iterations is exponential in $m+n$ (e.g. Klee-Minty cubes).
- Although no pivoting rule is known to yield a polynomial time algorithm, the Simplex method turns out to work very well in practice.

Simplex : Phase I

- In order to find an initial feasible basis, consider the auxiliary linear program

$$
\begin{equation*}
\max \{y \mid A x-b y \leq 0,-y \leq 0, y \leq 1\} \tag{Aux}
\end{equation*}
$$

where y is a new variable.

- Given an arbitrary basis K of A, obtain a feasible basis I for (Aux) by choosing $I=K \cup\{m+1\}$. The corresponding basic feasible solution is 0 .
- Apply the Simplex method to (Aux). If the optimum value is 0 , then (LP) is infeasible. Otherwise, the optimum value has to be 1 .
- If I^{\prime} is the final feasible basis of (Aux), then $K^{\prime}=I^{\prime} \backslash\{m+2\}$ can be used as an initial feasible basis for (LP).

Application: Metabolic networks

