Basic solutions

- $Ax \leq b$, $A \in \mathbb{R}^{m \times n}$, rank(A) = n.
- $M = \{1, ..., m\}$ row indices, $N = \{1, ..., n\}$ column indices
- For $I \subseteq M, J \subseteq N$ let A_{IJ} denote the submatrix of A defined by the rows in I and the columns in J.
- $I \subseteq M$, |I| = n is called a *basis of A* iff $A_{I*} = A_{IN}$ is non-singular.
- In this case, $A_{l*}^{-1}b_l$, where b_l is the subvector of b defined by the indices in l, is called a *basic solution*.
- If $x = A_{l*}^{-1}b_l$ satisfies $Ax \le b$, then x called a *basic feasible solution* and I is called a *feasible basis*.

Algebraic characterization of vertices

Theorem

Given the non-empty polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$, where rank(A) = n, a vector $v \in \mathbb{R}^n$ is a vertex of P if and only if it is a basic feasible solution of $Ax \le b$, for some basis I of A.

For any $c \in \mathbb{R}^n$, either the maximum value of $z = c^T x$ for $x \in P$ is attained at a vertex of P or z is unbounded on P

Corollary

P has at least one and at most finitely many vertices.

Remark

In general, a vertex may be defined by several bases.

Simplex Algorithm: Algebraic version

- Suppose rank(A) = n (otherwise apply Gaussian elimination).
- Suppose *I* is a feasible basis with corresponding vertex $v = A_{l*}^{-1}b_l$.
- Compute $u^T \stackrel{\text{def}}{=} c^T A_{l*}^{-1}$ (vector of *n* components indexed by *l*).
- If $u \ge 0$, then v is an optimal solution, because for each feasible solution x

$$c^{T}x = u^{T}A_{I*}x \le u^{T}b_{I} = u^{T}A_{I*}v = c^{T}v.$$

- If $u \not\geq 0$, choose $i \in I$ such that $u_i < 0$ and define the direction $d \stackrel{\text{def}}{=} -A_{l*}^{-1} e_i$, where e_i is the i-th unit basis vector in \mathbb{R}^I .
- Next increase the objective function value by going from v in direction d, while maintaining feasibility.

Simplex Algorithm: Algebraic version (2)

1. If $Ad \leq 0$, the largest $\lambda \geq 0$ for which $\nu + \lambda d$ is still feasible is

$$\lambda^* = \min\{\frac{b_l - A_{l*}v}{A_{l*}d} \mid l \in \{1, ..., m\}, A_{l*}d > 0\}.$$
 (PIV)

Let this minimum be attained at index k. Then $k \notin I$ because $A_{I*}d = -e_i \le 0$.

Define $I' = (I \setminus \{i\}) \cup \{k\}$, which corresponds to the vertex $v + \lambda^* d$.

Replace I by I' and repeat the iteration.

2. If $Ad \le 0$, then $v + \lambda d$ is feasible, for all $\lambda \ge 0$. Moreover,

$$c^{T}d = -c^{T}A_{l*}^{-1}e_{i} = -u^{T}e_{i} = -u_{i} > 0.$$

Thus the objective function can be increased along *d* to infinity and the problem is unbounded.

Termination and complexity

- The method terminates if the indices *i* and *k* are chosen in the right way (such choices are called *pivoting rules*).
- Following the rule of Bland, one can choose the smallest i such that $u_i < 0$ and the smallest k attaining the minimum in (PIV).
- For most known pivoting rules, sequences of examples have been constructed such that the number of iterations is exponential in m+n (e.g. Klee-Minty cubes).
- Although no pivoting rule is known to yield a polynomial time algorithm, the Simplex method turns out to work very well in practice.

Simplex: Phase I

• In order to find an initial feasible basis, consider the auxiliary linear program

$$\max\{y \mid Ax - by \le 0, -y \le 0, y \le 1\},$$
 (Aux)

where y is a new variable.

- Given an arbitrary basis K of A, obtain a feasible basis I for (Aux) by choosing $I = K \cup \{m+1\}$. The corresponding basic feasible solution is 0.
- Apply the Simplex method to (Aux). If the optimum value is 0, then (LP) is infeasible. Otherwise, the optimum value has to be 1.
- If I' is the final feasible basis of (Aux), then $K' = I' \setminus \{m+2\}$ can be used as an initial feasible basis for (LP).

Application: Metabolic networks

