Polyhedra

- Hyperplane $H=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=\beta\right\}, a \in \mathbb{R}^{n} \backslash\{0\}, \beta \in \mathbb{R}$
- Closed halfspace $\bar{H}=\left\{x \in \mathbb{R}^{n} \mid a^{T} x \leq \beta\right\}$
- Polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$
- Polytope $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b, I \leq x \leq u\right\}, I, u \in \mathbb{R}^{n}$
- Polyhedral cone $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq 0\right\}$

The feasible set

$$
P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}
$$

of a linear optimization problem is a polyhedron.

Vertices, Faces, Facets

- $P \subseteq \bar{H}, H \cap P \neq \emptyset \quad$ (Supporting hyperplane)
- $F=P \cap H \quad$ (Face)
- $\operatorname{dim}(F)=0 \quad$ (Vertex)
- $\operatorname{dim}(F)=1 \quad$ (Edge)
- $\operatorname{dim}(F)=\operatorname{dim}(P)-1 \quad$ (Facet)
- P pointed: P has at least one vertex.

Illustration

Rays and extreme rays

- $r \in \mathbb{R}^{n}$ is a ray of the polyhedron P
if for each $x \in P$ the set $\{x+\lambda r \mid \lambda \geq 0\}$
is contained in P.
- A ray r of P is extreme
if there do not exist two linearly
independent rays r^{1}, r^{2} of P
such that $r=\frac{1}{2}\left(r^{1}+r^{2}\right)$.

Hull operations

- $x \in \mathbb{R}^{n}$ is a linear combination of $x^{1}, \ldots, x^{k} \in \mathbb{R}^{n}$ if

$$
x=\lambda_{1} x^{1}+\cdots+\lambda_{k} x^{k}, \text { for some } \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}
$$

- If, in addition

$$
\left\{\begin{array}{ll}
\lambda_{1}, \ldots, \lambda_{k} \geq 0, & \\
& \lambda_{1}+\cdots+\lambda_{k}=1 \\
\lambda_{1}, \ldots, \lambda_{k} \geq 0, & \lambda_{1}+\cdots+\lambda_{k}=1
\end{array}\right\} x \text { is a }\left\{\begin{array}{c}
\text { conic } \\
\text { affine } \\
\text { convex }
\end{array}\right\} \text { combination. }
$$

- For $S \subseteq \mathbb{R}^{n}, S \neq \emptyset$, the set $\operatorname{lin}(S)$ (resp. cone (S), aff((S), $\operatorname{conv}(S)$) of all linear (resp. conic, affine, convex) combinations of finitely many vectors of S is called the linear (resp. conic, affine, convex) hull of S.

Outer and inner descriptions

- A subset $P \subseteq \mathbb{R}^{n}$ is a H-polytope, i.e., a bounded set of the form

Outer

$$
P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}, \text { for some } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
$$

if and only if it is a V-polytope, i.e.,

$$
P=\operatorname{conv}(V), \text { for some finite } V \subset \mathbb{R}^{n}
$$

- A subset $C \subseteq \mathbb{R}^{n}$ is a H-cone, i.e.,

$$
C=\left\{x \in \mathbb{R}^{n} \mid A x \leq 0\right\}, \text { for some } A \in \mathbb{R}^{m \times n}
$$

if and only if it is a V-cone, i.e.,

$$
C=\operatorname{cone}(Y), \text { for some finite } Y \subset \mathbb{R}^{n}
$$

Minkowski sum

- $X, Y \subseteq \mathbb{R}^{n}$
- $X+Y=\{x+y \mid x \in X, y \in Y\}$ (Minkowski sum)

Main theorem for polyhedra

A subset $P \subseteq \mathbb{R}^{n}$ is a H-polyhedron, i.e.,
Outer

$$
P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}, \text { for some } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
$$

if and only if it is a V-polyhedron, i.e.,
Inner

$$
P=\operatorname{conv}(V)+\operatorname{cone}(Y), \text { for some finite } V, Y \subset \mathbb{R}^{n}
$$

Theorem of Minkowski

- For each polyhedron $P \subseteq \mathbb{R}^{n}$ there exist finitely many points p^{1}, \ldots, p^{k} in P and finitely many rays r^{1}, \ldots, r^{l} of P such that

$$
P=\operatorname{conv}\left(p^{1}, \ldots, p^{k}\right)+\operatorname{cone}\left(r^{1}, \ldots, r^{\prime}\right)
$$

- If the polyhedron P is pointed, then p^{1}, \ldots, p^{k} may be chosen as the uniquely determined vertices of P, and $r^{1}, \ldots, r^{\prime}$ as representatives of the up to scalar multiplication uniquely determined extreme rays of P.
- Special cases
- A polytope is the convex hull of its vertices.
- A pointed polyhedral cone is the conic hull of its extreme rays.

Simplex Algorithm: Geometric view

Linear optimization problem

$$
\begin{equation*}
\max \left\{c^{T} x \mid A x \leq b, x \in \mathbb{R}^{n}\right\} \tag{LP}
\end{equation*}
$$

Simplex-Algorithm (Dantzig 1947)

1. Find a vertex of P.
2. Proceed from vertex to vertex along edges of P such that the objective function $z=c^{T} x$ increases.
3. Either a vertex will be reached that is optimal, or an edge will be chosen which goes off to infinity and along which z is unbounded.
