Polyhedra

- Hyperplane $H = \{x \in \mathbb{R}^n \mid a^T x = \beta\}, a \in \mathbb{R}^n \setminus \{0\}, \beta \in \mathbb{R}$
- Closed halfspace $\overline{H} = \{x \in \mathbb{R}^n \mid a^T x \leq \beta\}$
- Polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
- Polytope $P = \{x \in \mathbb{R}^n \mid Ax \le b, l \le x \le u\}, l, u \in \mathbb{R}^n$
- Polyhedral cone $P = \{x \in \mathbb{R}^n \mid Ax \leq 0\}$

The feasible set

$$P = \{x \in \mathbb{R}^n \mid Ax \le b\}$$

of a linear optimization problem is a polyhedron.

Vertices, Faces, Facets

- $P \subseteq \overline{H}, H \cap P \neq \emptyset$ (Supporting hyperplane)
- $F = P \cap H$ (Face)
- $\dim(F) = 0$ (Vertex)
- $\dim(F) = 1$ (Edge)
- $\dim(F) = \dim(P) 1$ (Facet)
- *P pointed: P* has at least one vertex.

Illustration

Rays and extreme rays

- $r \in \mathbb{R}^n$ is a *ray* of the polyhedron *P* if for each $x \in P$ the set $\{x + \lambda r \mid \lambda \ge 0\}$ is contained in *P*.
- A ray *r* of *P* is *extreme* if there do not exist two linearly independent rays r^1 , r^2 of *P* such that $r = \frac{1}{2}(r^1 + r^2)$.

Hull operations

• $x \in \mathbb{R}^n$ is a *linear combination* of $x^1, ..., x^k \in \mathbb{R}^n$ if

$$x = \lambda_1 x^1 + \cdots + \lambda_k x^k$$
, for some $\lambda_1, \dots, \lambda_k \in \mathbb{R}$

• If, in addition

 $\left\{\begin{array}{l}\lambda_1,\ldots,\lambda_k\geq 0,\\ &\lambda_1+\cdots+\lambda_k=1,\\ \lambda_1,\ldots,\lambda_k\geq 0, \quad \lambda_1+\cdots+\lambda_k=1,\end{array}\right\} \text{ x is a } \left\{\begin{array}{c}\text{conic}\\\text{affine}\\\text{convex}\end{array}\right\} \text{ combination}.$

For S ⊆ ℝⁿ, S ≠ Ø, the set lin(S) (resp. cone(S), aff(S), conv(S)) of all linear (resp. conic, affine, convex) combinations of finitely many vectors of S is called the *linear (resp. conic, affine, convex) hull of S*.

Outer and inner descriptions

• A subset $P \subseteq \mathbb{R}^n$ is a *H*-polytope, i.e., a bounded set of the form

$$P = \{x \in \mathbb{R}^n \mid Ax \le b\}, \text{ for some } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m.$$

if and only if it is a *V*-polytope, i.e.,

 $P = \operatorname{conv}(V)$, for some finite $V \subset \mathbb{R}^n$

• A subset $C \subseteq \mathbb{R}^n$ is a *H*-cone, i.e.,

$$C = \{x \in \mathbb{R}^n \mid Ax \leq 0\}, \text{ for some } A \in \mathbb{R}^{m \times n}.$$

if and only if it is a V-cone, i.e.,

 $C = \operatorname{cone}(Y)$, for some finite $Y \subset \mathbb{R}^n$

Inner

Outer

Outer

Inner

Minkowski sum

- $X, Y \subseteq \mathbb{R}^n$
- $X + Y = \{x + y \mid x \in X, y \in Y\}$ (Minkowski sum)

Main theorem for polyhedra

A subset $P \subseteq \mathbb{R}^n$ is a *H*-polyhedron, i.e.,

 $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$, for some $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$.

if and only if it is a V-polyhedron, i.e.,

 $P = \operatorname{conv}(V) + \operatorname{cone}(Y)$, for some finite $V, Y \subset \mathbb{R}^n$

Theorem of Minkowski

For each polyhedron P ⊆ ℝⁿ there exist finitely many points p¹,..., p^k in P and finitely many rays r¹,..., r^l of P such that

$$P = \operatorname{conv}(p^1, \dots, p^k) + \operatorname{cone}(r^1, \dots, r').$$

- If the polyhedron P is pointed, then p¹,..., p^k may be chosen as the uniquely determined vertices of P, and r¹,..., r^l as representatives of the up to scalar multiplication uniquely determined extreme rays of P.
- Special cases
 - A polytope is the convex hull of its vertices.
 - A pointed polyhedral cone is the conic hull of its extreme rays.

Simplex Algorithm: Geometric view

Linear optimization problem

$$\max\{c^T x \mid Ax \le b, x \in \mathbb{R}^n\}$$
(LP)

Simplex-Algorithm (Dantzig 1947)

- 1. Find a vertex of P.
- 2. Proceed from vertex to vertex along edges of *P* such that the objective function $z = c^T x$ increases.
- 3. Either a vertex will be reached that is optimal, or an edge will be chosen which goes off to infinity and along which *z* is unbounded.

Outer

Inner