Linear programming

Optimization Problems

• General optimization problem

$$\max\{z(x) \mid f_j(x) \le 0, x \in D\}$$
 or $\min\{z(x) \mid f_j(x) \le 0, x \in D\}$

where $D \subseteq \mathbb{R}^n$, $f_j : D \to \mathbb{R}$, for $j = 1, ..., m, z : D \to \mathbb{R}$.

• Linear optimization problem

$$\max\{c^{\mathsf{T}}x \mid Ax \leq b, x \in \mathbb{R}^n\}, \text{ with } c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

- *Integer* optimization problem: $x \in \mathbb{Z}^n$
- 0-1 optimization problem: $x \in \{0, 1\}^n$

Feasible and optimal solutions

• Consider the optimization problem

$$\max\{z(x) \mid f_j(x) \le 0, x \in D, j = 1, ..., m\}$$

- A *feasible solution* is a vector $x^* \in D \subseteq \mathbb{R}^n$ such that $f_j(x^*) \leq 0$, for all j = 1, ..., m.
- The set of all feasible solutions is called the feasible region.
- An optimal solution is a feasible solution such that

$$z(x^*) = \max\{z(x) \mid f_j(x) \le 0, x \in D, j = 1, ..., m\}.$$

- Feasible or optimal solutions
 - need not exist,
 - need not be unique.

Transformations

- $\min\{z(x) \mid x \in S\} = \max\{-z(x) \mid x \in S\}.$
- $f(x) \ge a$ if and only if $-f(x) \le -a$.
- f(x) = a if and only if $f(x) \le a \land -f(x) \le -a$.

Lemma

Any linear programming problem can be brought to the form

 $\max\{c^T x \mid Ax \leq b\} \text{ or } \max\{c^T x \mid Ax = b, x \geq 0\}.$

Proof: a) $a^T x \le \beta \rightsquigarrow a^T x + x' = \beta, x' \ge 0$ (slack variable) b) x free $\rightsquigarrow x = x^+ - x^-, x^+, x^- \ge 0$.

Practical problem solving

- 1. Model building
- 2. Model solving
- 3. Model analysis

Example: Production problem

A cell can synthesize *n* different products using *m* different substrates.

- *b_i*: available amount of the *i*-th substrate
- *a_{ij}*: number of units of the *i*-th substrate needed to produce one unit of the *j*-th product
- c_j : benefit for one unit of the *j*-th product

Decide how much of each product to synthesize in order to maximize the total benefit \rightsquigarrow decision variables x_i .

Linear programming formulation

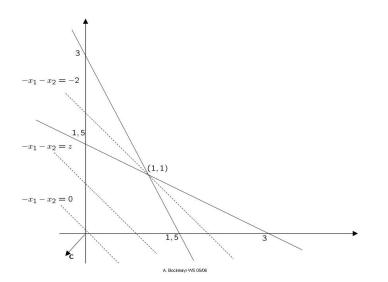
max	$C_1 X_1$	+	•••	+	C _n X _n		
w.r.t.	<i>a</i> ₁₁ <i>x</i> ₁	+		+	a _{1n} x _n	\leq	<i>b</i> ₁ ,
	÷				÷		
	<i>a_{m1} x</i> ₁	+		+	a _{mn} x _n	\leq	b _m ,
	<i>x</i> ₁ ,				, x _n	\geq	0.

In matrix notation:

$$\max\{c^T x \mid Ax \leq b, x \geq 0\},\$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, $x \in \mathbb{R}^n$.

Geometric illustration



max	<i>x</i> ₁	+	<i>X</i> 2		
w.r.t.	<i>x</i> ₁	+	2 <i>x</i> ₂	\leq	3
	2 <i>x</i> ₁	+	<i>x</i> ₂	\leq	3
	<i>x</i> ₁	,	<i>x</i> ₂	\geq	0