MCMC: Metropolis-Hastings algorithm

Ingredient: A procedure "modify”, which adds/swaps/deletes
edges, and secures that the resulting graph is again cycle-free (so
as to remain in the realm of DAGs).

Start: Take a DAG Gy and calculate its probability P(Go|D).
t<0

While (there is still coffee in the mug):
Gy < modify(Gy)
Accept new DAG with probability
: P(Gy|D)
min(1l, ————=).
(- p(cin)’

If accepted Gty < Gy and t + t+ 1.
end while.
Output G;.

Theorem: This algorithm converges (after a lot of coffee) to the
optimal G.

Why?: With the suggested acceptance probability, the
accept/reject decision defines a Markov chain on the space of
DAGs. By applying steps of this Markov chain one ensure
convergence to the MC's equilibrium distribution. This means that
after a burn-in phase, the algorithm explores this distribution, and
thus samples the more likely DAGs more often.

https://en.wikipedia.org/wiki/Bayesian_inference_in_
phylogeny#/media/File:Robot_metaphor.png

https://en.wikipedia.org/wiki/Bayesian_inference_in_phylogeny#/media/File:Robot_metaphor.png
https://en.wikipedia.org/wiki/Bayesian_inference_in_phylogeny#/media/File:Robot_metaphor.png

Remark: In reality, MCMC is better for integration than for
optimization.

It is better in the end not to select one DAG, but to look for
frequently used edges.

Problem: A graph that is made up of edges occurring frequently in
the MCMC run need not be acyclic.

Back to the problem of small sample sizes. It is hard to believe
that with little data we can estimate so much detail.

The MCMC algorithm explores across the equilibrium distribution
of the MC in DAG space. We can therefore ask about the stability
of certain, interesting features.

Example: What is the probability of having gene x directly linked
to gene y. Answer: Run MCMC for a long time. Count the
frequency at which this holds true.

D-separation

* A, B, and C are non-intersecting subsets of nodes in a
directed graph.
* A path from A to B is blocked if it contains a node such that
either
a) the arrows on the path meet either head-to-tail or tail-
to-tail at the node, and the node is in the set C, or
b) the arrows meet head-to-head at the node, and
neither the node, nor any of its descendants, are in the
set C.
* If all paths from A to B are blocked, A is said to be d-
separated from B by C.
* If Ais d-separated from B by C, the joint distribution over
all variables in the graph satisfies A 1l B | C.

D-separation: Example

all b]c allb|f

d-separation

Alternative phrasing (from " Causation, prediction, and search”):

Following Pearl (1988), we say that for a graph G, if X and Y are
vertices in G, X # Y, and W is a set of vertices in G not
containing X or Y, then X and Y are d-separated given W in G if
and only if there exists no undirected path U between X and Y,
such that (i) every collider on U has a descendent in W and (ii) no
other vertex on U is in W.

Connection to conditional independence

A, B ...nodes
C ... set of nodes

If P is a discrete distribution faithful to a graph G, then A and B
are d-separated given a set of variables C if and only if A and B are
conditionally independent given C.

If P is a distribution linearly faithful to a graph G, then A and B
are d-separated given C if and only if p4 gjc = 0.
(Spirtes, Causation, Prediction, and Search)

Heuristics to compute BNs: PC algorithm

See

" Causation, Prediction, and Search” by Spirtes, Glymour, and

Scheines, pl16ff. Roughly it works as follows:

>

>

>

Iterative algorithm
Starts with complete, undirected graph

Find edges which are conditionally independent with respect
to 1 other variable. Delete.

Find edges which are Cl wrt to 2-element-sets of variables.
Delete.

etc.

Find and orient the colliders

Issues

Why do we delete these edges? Because if a BN would contain
such a Cl edge, this would contradict the directed local
Markov condition (A variable X; is conditionally independent
of its "non-descendants” given the parents of X;.)

How to test for conditional independence? Partial correlation!
Does it depend on the order of processing? No and yes.

How does one orient the edges?

116 Causation, Prediction, and Search

by any subset of variables containing ¥ but not X, Z, the algorithm will mistakenly require a
collision at ¥, and this requirement will ramify through orientations of other edges. Or, if the
true structure contains a collision at ¥ but X - ¥ is omitted in the input to step C), no unique
orientation will be given to ¥ - Z, and this uncertainty may ramify through the orientations of
other edges on paths including Z.

Instabilities may also arise in Step C) because of errors in the list of d-scparation relations input,
even when the underlying undirected graph is correct. If in the input to C), X is adjacent to ¥
and Y to Z but not X to Z and a d-separation relation between X and Z given S containing Y is
omitted from the input, no orientation error will result unless no other set containing ¥ d-
separates X and Z. But if in the true directed graph, the edges between X and ¥ and between ¥
and Z collide at ¥, and a d-separation relation involving X and Z and some set U containing ¥
but not X or Z is erroneously included in the input, the algorithm will conclude that there is no
collision at ¥, and this error may be ramified to other edges.

A little reflection on Step C) reveals that its output may not be a collection of directed acyclic
graphs if one of the four assumptions listed at the beginning of this section is violated. This is
not necessarily a defect of the algorithm. If the algorithm finds that the edges X - ¥ - Z collide at
Y, and Y - Z - W collide at Z, it will create a pattern with an edge ¥ <-> Z. Double headed
edges can oceur when the causal structure is not causally sufficient, or when there s an error in
input (as from sampling variation). They have a theoretical role in identifying the presence of
unmeasured common causes, an issue discussed further in the next chapter.

5.4.2 The PC Algorithm

In the worst case, the SGS algorithm requires a number of d-separation tests that increases
exponentially with the number of vertic
independence relations or vanishing partial correlations. But the SGS algorithm is very
inefficient because for edges in the true graph the worst case is also the expected case. For any
undirected edge that s in the graph G, the number of d-separation tests that must be conducted

. as must any algorithm based on conditional

in stage B) of the algorithm is unaffected by the connectivity of the true graph, and therefore
even for sparse graphs the algorithm rapidly becomes infeasible as the number of vertices
increases. Besides problems of computational feasibility, the algorithm has problems of
reliability when applied to sample data. The determination of higher order conditional
independence relations from sample distributions is generally less reliable than is the
determination of lower order independence relations. With, say, 37 variables taking three values

Discovery Algorithms for Causally Sufficient Structures 117

each, to determine the conditional independence of two variables on the set of all remaining
variables requires considering the relations among the frequencies of 335 distinct states, only a
fraction of which will be instantiated even in very large samples.

‘We should like an algorithm that has the same input/output relations as the SGS procedure for
faithful distributions but which for sparse graphs does not require the testing of higher order
independence relations in the discrete case, and in any case requires testing as few d-separation
relations as possible. The following procedure (Spirtes, Glymour, and Scheines, 1991) starts
by forming the complete undirected graph, then "thins" that graph by removing edges with zero
order conditional independence relations, thins again with first order conditional independence
relations, and so on. The set of variables conditioned on need only be a subset of the set of

variables adjacent to one or the other of the variables conditioned.

Let Adjacencies(C,4) be the set of vertices adjacent to 4 in directed acyclic graph C. (In the
algorithm, the graph C is continually updated, so Adjacencies(C,4) is constantly changing as
the algorithm progresses.)

PC Algorithm:

A.) Form the complete undirected graph C on the vertex set V.

B.)
n=0.
repeat
repeat
select an ordered pair of variables X and Y that are adjacent in C such
that Adj ies(C,X)\{Y} has cardinality greater than or equal to

n,and a subset S of Adjacencies(C,X)\{Y} of cardinality n, and if
X and Y are d-separated given S delete edge X - ¥ from C and
record S in Sepset(X,Y) and Sepset(Y,X);

until all ordered pairs of adjacent variables X and Y such that

Adiananciacl VW IV hae rardinalitcr caraatar than ar amral $n 0 and all

118 Causation, Prediction, and Search

C.) For each triple of vertices X, Y, Z such that the pair X, ¥ and the pair Y, Z are each
adjacent in C but the pair X, Z are not adjacent in C, orient X - Y - Zas X -> Y <- Zif
and only if ¥ is not in Sepset(X,Z).
D. repeat
If A -> B, B and C are adjacent, 4 and C are not adjacent, and there is no
arrowhead at B, then orient B - Cas B -> C.
If there is a directed path from 4 to B, and an edge between 4 and B, then orient
A-BasAd->B.

until no more edges can be oriented.

Figure 1 traces the operation of the first two parts of the PC algorithm:

LN S
N, =

True Graph Complete Undirected Graph

n=0 No zero order independencies

n=1 First order independencies Resulting Adjacencies

9
4 lc 41D B / \
ALE B c Up 3 3\7/‘?
D

n=2: Second order independencies Resulting Adjacencies

Discovery Algorithms for Causally Sufficient Structures 119

Although it does not in this case, stage B) of the algorithm may continue testing for some steps
after the set of adjacencies in the true directed graph has been identified. The undirected graph at
the bottom of figure 1 is now partially oriented in step C). The triples of variables with only two
adjacencies among them are:

A-B-GC; A-B-D;
C-B-D; B-C-E;
B -D-E; C~E-D:

E is not in Sepset(C,D) so C - E and E - D collide at £. None of the other triples form
colliders. The final pattern produced by the algorithm is shown in figure 2.

N
T,

Figure 2

The pattern in figure 2 characterizes a faithful indistinguishability class. Every orientation of the
undirected edges in figure 2 is permissible that does not include a collision at B.

5.4.2.1 Complexity
The complexity of the algorithm for a graph G is bounded by the largest degree in G. Let k be

the maximal degree of any vertex and let n be the number of vertices. Then in the worst case the
number of conditional independence tests required by the algorithm is bounded by

PC algorithm: order of processing

Theorem: If for the given data there exists a BN representation,
then the order of processing is unimportant, i.e., any order will
recover the correct BN.

Without proof.

For approximation purposes, the order matters.

