
MCMC: Metropolis-Hastings algorithm
Ingredient: A procedure ”modify”, which adds/swaps/deletes
edges, and secures that the resulting graph is again cycle-free (so
as to remain in the realm of DAGs).

Start: Take a DAG G
0

and calculate its probability P(G
0

|D).
t 0

While (there is still co↵ee in the mug):
G
t

0 modify(G
t

)
Accept new DAG with probability

min(1,
P(G

t

0 |D)

P(G
t

|D)
).

If accepted G
t+1

 G
t

0 and t t + 1.
end while.
Output G

t

.

Theorem: This algorithm converges (after a lot of co↵ee) to the
optimal G.

Why?: With the suggested acceptance probability, the
accept/reject decision defines a Markov chain on the space of
DAGs. By applying steps of this Markov chain one ensure
convergence to the MC’s equilibrium distribution. This means that
after a burn-in phase, the algorithm explores this distribution, and
thus samples the more likely DAGs more often.

https://en.wikipedia.org/wiki/Bayesian_inference_in_

phylogeny#/media/File:Robot_metaphor.png

https://en.wikipedia.org/wiki/Bayesian_inference_in_phylogeny#/media/File:Robot_metaphor.png
https://en.wikipedia.org/wiki/Bayesian_inference_in_phylogeny#/media/File:Robot_metaphor.png

Remark: In reality, MCMC is better for integration than for
optimization.

It is better in the end not to select one DAG, but to look for
frequently used edges.

Problem: A graph that is made up of edges occurring frequently in
the MCMC run need not be acyclic.

Back to the problem of small sample sizes. It is hard to believe
that with little data we can estimate so much detail.

The MCMC algorithm explores across the equilibrium distribution
of the MC in DAG space. We can therefore ask about the stability
of certain, interesting features.

Example: What is the probability of having gene x directly linked
to gene y. Answer: Run MCMC for a long time. Count the
frequency at which this holds true.

d-separation

Alternative phrasing (from ”Causation, prediction, and search”):

Following Pearl (1988), we say that for a graph G, if X and Y are
vertices in G, X 6= Y , and W is a set of vertices in G not
containing X or Y, then X and Y are d-separated given W in G if
and only if there exists no undirected path U between X and Y,
such that (i) every collider on U has a descendent in W and (ii) no
other vertex on U is in W.

Connection to conditional independence

A,B . . . nodes
C . . . set of nodes

If P is a discrete distribution faithful to a graph G, then A and B
are d-separated given a set of variables C if and only if A and B are
conditionally independent given C.

If P is a distribution linearly faithful to a graph G, then A and B
are d-separated given C if and only if ⇢

A,B|C = 0.
(Spirtes, Causation, Prediction, and Search)

Heuristics to compute BNs: PC algorithm

See ”Causation, Prediction, and Search” by Spirtes, Glymour, and
Scheines, p116↵. Roughly it works as follows:

I Iterative algorithm

I Starts with complete, undirected graph

I Find edges which are conditionally independent with respect
to 1 other variable. Delete.

I Find edges which are CI wrt to 2-element-sets of variables.
Delete.

I etc.

I Find and orient the colliders

Issues

I Why do we delete these edges? Because if a BN would contain
such a CI edge, this would contradict the directed local
Markov condition (A variable X

i

is conditionally independent
of its ”non-descendants” given the parents of X

i

.)

I How to test for conditional independence? Partial correlation!

I Does it depend on the order of processing? No and yes.

I How does one orient the edges?

PC algorithm: order of processing

Theorem: If for the given data there exists a BN representation,
then the order of processing is unimportant, i.e., any order will
recover the correct BN.
Without proof.

For approximation purposes, the order matters.

