
Gaussian Graphical Models

When the RVs in the nodes of the graph are the marginals of a
Gaussian with covariance matrix ⌃, then the entries of ⌃�1, which
are 0, correspond exactly to the edges not contained in the
independence graph. We call this a Gaussian Graphical Model.
In fact, the missing edges denote exactly the conditional
independencies.
So it is “easy” to compute the independence graph, because the
pairwise Markov property is fulfilled.
We’ll say more about “easy” later, because this matrix inversion is
not always so easy.

Partial correlation coe�cient

The partial correlation coe�cient between X
1

and X
2

is the
correlation coe�cient of the residual vectors arising from regression
of X

1

vs the X
3

, . . . ,X
K

, and the residual vectors arising from
regressing X

2

vs X
3

, . . . ,X
k

.

Partial correlation coe�cients can be computed from the entries of
the inverse of the variance-covariance matrix: Theorem: Let
X
1

,,X
k

be random vectors and P = ⌃�1.

⇢
i ,j |rest = �

p
ijp

p
ii

p
jj

Singular value decomposition

Covariance matrix is the product of (normalized) data matrix times
its transpose.
Depending on the shape (rank) of the data matrix, the product will
be singular. How to invert a singular matrix?
Singular value decomposition of matrix A , of shape n ⇥m:

A = UWV T

U is m ⇥m and contains the eigenvectors of AAT .
W is a diagonal matrix and contains the singular values. They are
the square roots of the eigenvalues of AAT (which are also the
eigenvalues of ATA).
V is n ⇥ n.
Condition number: defined as the largest singular value divided by
the smallest one. If large, we say the matrix is ill-conditioned.

Pseudoinverse

A+ = VW�1UT

We are applying this specifically to a quadratic matrix (the
covariance matrix).In this case the W�1 is contains the diagonal
values 1/w

i

. They trick is that the singular values on the diagonal
of W are sorted and the last ones are 0 (singular matrix) or
near-zero (ill-conditioned matrix). The inversion is done by only
taking the inverse for the the singular values that are not 0, or are
su�ciently di↵erent from 0.
See SVD function in R, or in package corpcor (Strimmer).

Shrinkage methods: Strimmers method

See R packages corpcor and GeneNet. Estimate a b̈etterc̈ovariance
matrix. Mix the covariance matrix with another matrix (e.g., for a
multivariate Gaussian, with little weight o↵-diagonal).
Let U be the observed covariance matrix, and T be a (full rank)
covariance matrix that might look like it could have generated the
data.

Û = �T + (1� �)U

Û will be invertible and not change reality too much. See Schäfer
and Strimmer, 2005.

Bayesian Networks

Given a directed acyclic graph (DAG) G.
Associate to each node a distribution, that is defined as a
conditional distribution on the distributions in the parent nodes.
(”Parent node” is a well-defined notion due to the DAG structure.)
The joint distribution can be computed from the conditional
probability distributions in the nodes (”local probability models”).
Then, this model (DAG plus local probability models) is called a
Bayesian Network.
DAG is used to represent the factorization of a distribution. Think
of the conditional probability distributions as (little) tables. When
a node has several parents, this will be multi-dimensional table.

Conditional independence in a BN G:
A variable X is conditionally independent of its ”non-descendants”
given the parents of X . Compare to the local Markov condition.
This is a directed version.

And, loosely formulated:
When X and Y are conditionally independent with respect to Z,
then the BN G will not contain an edge between X and Y.

Factorization

Let G be a BN over the variables X
1

, ...,X
n

. We say that a
(high-dimensional) distribution P factorizes according to G if P
can be expressed as the product of the conditional probability
distributions:

P(X
1

, ...,X
n

) =
Y

P
local

(X
i

|parents(X
i

))

Goal

Given a high-dimensional distribution. Find a BN (DAG plus local
distributions) such that its joint distribution approximates the
given high-dimensional distribution.
BN is a generative model.
This is also e�cient: For 2-state variables in each cell, the joint
distribution is defined by 2k entries. If we can represent it as a BN,
we save on parameters (compute!).

Equivalence classes

Some graph motifs are indistinguishable when it comes to the
distribution they generate. Leads to equivalence classes. (Board!)

Theorem 2.1 (Pearl and Verma, 1991). Two DAGs are equivalent
if and only if they have the same underlying undirected graph and
the same v-structures (i.e., converging directed edges into the
same node, such that a! b c , and there is no edge between a
and c).
Moreover, an equivalence class of network structures can be
uniquely represented by a partially directed graph (PDAG), where a
directed edge X ! Y denotes that all members of the equivalence
class contain the arc X! Y ; an undirected edge X � Y denotes
that some members of the class contain the arc X ! Y , while
others contain the arc Y X . (cited from Friedman et al., JCB
2000)

Tasks

I Inference:

I Learning: Estimate parameters of LPD!

I Structure learning: What is a good network?

Inference

Am I out of fuel?
Relies on Bayes theorem:

P(A|B) = P(B |A)P(A)
P(B)

For an example, see slides by Bishop (”Am I out of fuel?”)
https://www.microsoft.com/en-us/research/wp-content/

uploads/2016/05/prml-slides-8.pdf

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/prml-slides-8.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/prml-slides-8.pdf

For later, general formula for Bayes theorem: Let A be partitioned
into subsets A

i

. Then P(B) =
P

j

P(B |A
j

, and therefore:

P(A
i

|B) = P(B |A
i

)P(A
i

)P
j

P(B |A
j

Learning in BNs

Given a high-dimensional distribution and a DAG G. We assume a
particular distribution for the LPDs, depending on a parameter
(vector). We want to infer the parameter.
Concrete example: Let all variables be binary. LDP: binomial
distribution, little tables. Parameter ✓

i

for each binomial. We want
to infer ✓.

Bayesian thinking

D - Daten, G - DAG Prior distribution on ✓: P(✓) (= P(✓|G)).

P(✓|D,G) =
P(D|✓,G)P(✓|G)

P(D|G)

P(D|✓,G) . . . data likelihood
P(D|G) . . . model evidence
P(✓|D,G) . . . posterior (distribution of ✓)

Parameter estimation

If we wanted to estimate ✓ in the Bayesian setting we would use
the expectation over the posterior distribution of ✓.
This is in contrast to maximum likelihood estimation, where the
argmax is used.

Probability of the data

For a reasonable estimate of the probability of the data under the
model we compute its expectation with respect to ✓ (=marginal
likelihood, integrating out the parameter ✓). This is the
denominator from above.

P(D|G) =

Z
P(D, ✓|G)d✓ =

Z
P(D|✓,G)P(✓|G)d✓

G remains fixed.

Alternative view

P(G |D) . . .Bayes score (of a graph)

P(G |D) =
P(D|G)P(G)

P(D)

For the purpose of comparing di↵erent graphs, P(D) doesn’t
matter, because it is the same for all graphs. This is convenient,
since we anyway do not know how to compute it (it would include
averaging over all models).
P(G) we assume uniform, i.e. all graphs are equally likely to occur.
Then, in order to compare across graph structures, we find that
P(G |D) is proportional to P(D|G) - and this we know how to
compute.

Summary

Model evidence:
prior ! model evidence

Parameter estimation:
prior ! model evidence ! posterior ! expectation ✓̂

Model evidence is an alternative to the maximal likelihood of the
data. While the maximum of the likelihood is assumed at the
maximizing ✓, there s no particular ✓ associated to the model
evidence.

Choice of prior

Assume a BN with a 2 possible outcomes in each node (variable).
E.g., a gene is expressed HIGH or LOW.
Then each conditional distribution can be modeled as a binomial
distribution with parameter ✓

i

, indexed over all edges (2 per edge, I
think).

The beta distribution

Beta distribution is the continuous analogue to the binomial.
The density function f of a beta distribution �(↵,�) is

f (x ;↵,�) =
�(↵+ �)

�(↵)�(�)
x↵�1(1� x)��1

Remember the gamma function. It is the continuous extension of
the factorial:

�(n) = (n � 1)!

We might need:

Z
1

0

(1� x)↵�1x��1dx =
�(↵)�(�)

�(↵+ �)

Binomial setting. H heads, T tails observed (= D). Let ✓ be
distributed according to a Beta distribution �(✓;↵,�). Then one
obtains the following posterior (board):

P(✓|D) = �(✓;↵+ H,� + T)

So assuming a beta prior the posterior is again beta. We say the
”beta is the conjugate prior to the binomial distribution”.
For the estimate ✓̂ one obtains (board):

✓̂ =

Z
✓P(✓|D)d✓ =

↵+ H

↵+ � + H + T

Dirichlet distribution is the conjugate prior to the
multinomial

Think of a multinomial distribution with k classes and probabilities
✓ = (p

1

, . . . , p
k

).
Dirichlet distribution:

D(✓;↵
1

, . . . ,↵
k

) =
�(
P

↵
i

)Q
�(↵

i

)

Y
✓↵i

�1

i

And with this prior

P(✓|D) = D(✓;↵
1

+ N
1

, . . . ,↵
k

+ N
k

)

Computing the model evidence for a BN: factorization

Keep G fixed. To compute the model evidence, we need the
integral

P(D|G) =

Z
P(D|✓,G)P(✓|G)d✓

In a BN this factorizes over the LPDs! (Assume

independence of parameters.)

Therefore we can compute the model evidence for any graph G.

Comparing across graphs: BIC

It is di�cult to compare models with di↵erent numbers of
parameters because the model with more parameters (edges) will
always give a ”better” explanation of the data, i.e. having higher
probability. Remedy: Penalize the likelihood.

Let d be the number of parameters and N the number of data
points (the sample size)
Bayesian information criterion (BIC):

score
BIC

(G) = max
✓

(P(D|✓,G)� d

2
log(N))

The ”better” model is the one with the higher BIC-score.

Comparing across graphs

For each graph, we can in principle compute its Bayes score. But
there are MANY DAGs on n nodes ! stochastic search strategy:
Markov Chain Monte Carlo (MCMC)

MCMC comes in di↵erent flavors: Gibbs sampling,
Metropolis-Hastings, etc.

MCMC: Metropolis-Hastings algorithm
Ingredient: A procedure ”modify”, which adds/swaps/deletes
edges, and secures that the resulting graph is again cycle-free (so
as to remain in the realm of DAGs).

Start: Take a DAG G
0

and calculate its probability P(G
0

|D).
t 0

While (there is still co↵ee in the mug):
G
t

0 modify(G
t

)
Accept new DAG with probability

min(1,
P(G

t

0 |D)

P(G
t

|D)
).

If accepted G
t+1

 G
t

0 and t t + 1.
end while.
Output G

t

.

Theorem: This algorithm converges (after a lot of co↵ee) to the
optimal G.

Why?: With the suggested acceptance probability, the
accept/reject decision defines a Markov chain on the space of
DAGs. By applying steps of this Markov chain one ensure
convergence to the MC’s equilibrium distribution. This means that
after a burn-in phase, the algorithm explores this distribution, and
thus samples the more likely DAGs more often.

Remark: In reality, MCMC is better for integration than for
optimization.

It is better in the end not to select one DAG, but to look for
frequently used edges.

Problem: A graph that is made up of edges occurring frequently in
the MCMC run need not be acyclic.

Heuristics to compute BNs: PC algorithm

See ”Causation, Prediction, and Search” by Spirtes, Glymour, and
Scheines, p116↵. Roughly it works as follows:

I Iterative algorithm

I Starts with complete, undirected graph

I Find edges which are conditionally independent with respect
to 1 other variable. Delete.

I Find edges which are CI wrt to 2-element-sets of variables.
Delete.

I etc.

I Find and orient the colliders

Issues

I Why do we delete these edges? Because if a BN would contain
such a CI edge, this would contradict the directed local
Markov condition (A variable X

i

is conditionally independent
of its ”non-descendants” given the parents of X

i

.)

I How to test for conditional independence? Partial correlation!

I Does it depend on the order of processing? No and yes.

I How does one orient the edges?

PC algorithm: order of processing

Theorem: If for the given data there exists a BN representation,
then the order of processing is unimportant, i.e., any order will
recover the correct BN.
Without proof.

For approximation purposes, the order matters.

d-separation

See Bishop slides

Alternative phrasing (from ”Causation, prediction, and search”):
Following Pearl (1988), we say that for a graph G, if X and Y are
vertices in G, X 6= Y , and W is a set of vertices in G not
containing X or Y, then X and Y are d-separated given W in G if
and only if there exists no undirected path U between X and Y,
such that (i) every collider on U has a descendent in W and (ii) no
other vertex on U is in W.

