
More on conditional independence

Do the 2 examples from Whittaker
http://www.statlab.uni-heidelberg.de/people/eichler/
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Independence graphs (Whittaker)

Def: Let X = (X
1

, . . . .,Xk) be a k-tuple of random vectors. A
graph G with k nodes is called the independence graph of X if
non-adjacent pairs of variables are independent conditional on the
remaining variables.
This condition is called the pairwise Markov property.
Compare to a Markov chain, where the future is independent of
the past conditional on the present.



It is equivalent to either of the following two statements:

Local Markov property: Any variable is independent of all
remaining variables conditional only on its adjacent variables.

Global Markov property: Any two subsets of variables separated by
a third set of variables, are independent conditional only on the
variables in the third set.



Partial variance, covariance, correlation

Now, suppose X
1

, . . . ,Xk are random vectors. Let’s look at the
independence graph of the Xi vectors. When an entry of the ⌃ is
0, this only means that I and j are independent.
Let all Xi be normalized (i.e., the mean was subtracted). Then

var(Xi ) = XT ⇤ X

and
cov(Xi ,Xj) = XT

i ⇤ Xj

We study a prediction problem: Estimate Y from X : Y ⇡ bTX .
Define partial variance from geometry (board).



Partial covariance

We want to define the partial covariance of Y ,Z given X . Let
Ŷ (X ) be the estimate of Y from X and Ẑ (X ) the estimate of Z
from X . The partial covariance cov(Y ,Z |X ) is defined as

cov(Y � Ŷ (X ),Z � Ẑ (X ))

.
The partial correlation coe�cient is its scaled version:

⇢Y ,Z |X =
cov(Y ,Z |X )q

var(Y � Ŷ (X ))var(Z � Ẑ (X ))



Relation to inverse of the covariance matrix

The inverse of the covariance matrix is called precision matrix or
concentration matrix.

The (i , j) entry of the inverse of ⌃ is 0 exactly if the partial
covariance of Xi and Xj with respect to the rest is 0.

In fact, this holds true for any partition into three subsets - block
diagonal structure of the inverse covariance matrix.



Gaussian Graphical Models

When the RVs in the nodes of the graph are the marginals of a
Gaussian with covariance matrix ⌃, then the entries of ⌃�1, which
are 0, correspond exactly to the edges not contained in the
independence graph. We call this a Gaussian Graphical Model.
In fact, the missing edges denote exactly the conditional
independencies.
So it is “easy” to compute the independence graph, because the
pairwise Markov property is fulfilled.
We’ll say more about “easy” later, because this matrix inversion is
not always so easy.



Partial correlation coe�cient

The partial correlation coe�cient between X
1

and X
2

is the
correlation coe�cient of the residual vectors arising from regression
of X

1

vs the X
3

, . . . ,XK , and the residual vectors arising from
regressing X

2

vs X
3

, . . . ,Xk .



Partial correlation coe�cients can be computed from the entries of
the inverse of the variance-covariance matrix: Theorem: Let
X
1

, . . . .,Xk be random vectors and P = ⌃�1.

⇢i ,j |rest = �
pijp
piipjj



Covariance matrix is the product of (normalized) datamatrix times
its transpose.
Depending on the shape (rank) of the datamatrix, the product will
be singular. How to invert a singular matrix: (remember the
normal equation from least squares: Y TX = bTXTX
Singular value decomposition of matrix A , of shape n ⇥m:

A = UWV T

U is m ⇥m and contains the eigenvectors of AAT .
W is a diagonal matrix and contains the singular values. They are
the square roots of the eigenvalues of AAT (which are also the
eigenvalues of ATA).
V is n ⇥ n.
Pseudoinverse: A+ = V TW�1U The trick is that the singular
values on Ws diagonal are sorted and the last ones are 0 or
near-zero. The inversion is done by only taking the inverse for the
the singular values that are not 0.
See SVD function in R.



Shrinkage methods: Strimmers method

See R package corpcor. Estimate a b̈etterc̈ovariance matrix. Mix
the covariance matrix with another matrix (e.g., for a multivariate
Gaussian, with little weight o↵-diagonal). This should make it
invertible and not change reality too much. See Schäfer and
Strimmer, 2005.


