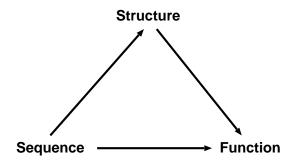
Network Analysis

Alexander Bockmayr Martin Vingron Annika Röhl SS 2017, FU Berlin

Organisational issues


• Slides and additional material will be made available through the course pages

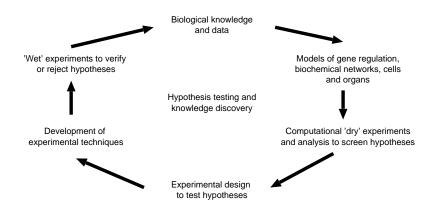
http://www.mi.fu-berlin.de/w/AgMathLife/NetzWerkSS17

- Note that these slides are not a script.
- Please take notes and read the recommended articles.
- Time slots: Monday 10-14, Friday, 9-10.30
 Precise schedule will be announced on course page
- Related Praxisseminar: Computational systems biology

Computational biology

• Biological macromolecules

- Macromolecular interactions
- Pathways, networks, systems


Computational systems biology

- Systems biology: Understand how *components* of a biological system *interact* to perform complex biological function
- · Different levels of complexity
 - Many components, huge amount of data
 - Non-trivial interactions: non-linearity, feedback, . . .
- Intuitive reasoning not sufficient
- Need for mathematical and computational models and tools

→ predictive biology

Systems biology research cycle

Kitano 2002

Biological networks

- Various network types
 - Metabolic networks
 - Gene regulatory networks
 - Signaling networks
 - → syntax / semantics ?
- Structure/topology vs. dynamics:
 How does the dynamic behavior depend on the topology?
- · Mathematical and computational study
 - Modeling
 - Simulation
 - Analysis → formal methods
 - Optimization

Mathematical modeling approaches

- Network topology
 - Graph-based modeling
 - Stoichiometric/constraint-based modeling
- Network dynamics
 - Continuous modeling
 - Discrete modeling
 - Stochastic modeling
 - Hybrid modeling

Important issues

- Abstraction vs. precision
- Quantitative vs. qualitative
- Deterministic vs. non-deterministic

Some activities

- Research Center Matheon and Einstein Center for Mathematics ECMath
- DFG Research and Training Group "Computational Systems Biology" (HU, FU, Charité, MDC, MPI)
- IMPRS "Computational Biology and Scientific Computing"
- Berlin Institute for Medical Systems Biology (BIMSB)

Outline

- 1. Continuous models → simulation
- 2. Discrete models \leadsto model checking
- 3. Constraint-based models \leadsto optimization
- 4. Stochastic and hybrid models