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Rethinking Chemical Kinetics 

A Chemically Reacting System consists of … 

• Molecules of N  chemical species 1, , NS S… . 

- Inside a volume Ω , at some temperature T . 

• M  “elemental” reaction channels 1, , MR R… . 

- jR  describes a single instantaneous physical event, which changes the 

population of at least one species. 

-  “Elemental” means that jR  is one of two types: 

  something elseiS →    (unimolecular), 

 or 

  something elsei iS S ′+ →    (bimolecular). 

-  All other types (trimolecular, reversible, etc.) are made up of a series 

of two or more elemental reactions. 
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 How does a chemically reacting system evolve in time? 

The traditional answer, for spatially homogeneous systems: 

“According to the reaction rate equation (RRE).” 

• A set of coupled, first-order ODEs. 

• Derived using ad hoc, phenomenological reasoning. 

o Is more than the “mass action equations” of thermodynamics, 

which apply only to systems in equilibrium. 

• Implies the system evolves continuously and deterministically, even 

though molecules come in integer numbers and react stochastically. 

• Is empirically accurate for large (test tube size) systems. 

• But is often not adequate for very small (cell-size) systems. 

* * * 

Let’s take a fresh look at this question. 

 Doing it “right”:  Molecular Dynamics 

• The most exact way of describing the system’s evolution. 

• The “motion picture” approach:  Tracks the position and velocity of 

every molecule in the system. 

• Simulates every collision, non-reactive as well as reactive. 

• Shows changes in species populations and their spatial distributions. 

• But . . . it’s unfeasibly slow for nearly all realistic systems. 
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A great simplification occurs if successive reactive collisions tend 

 to be separated in time by very many non-reactive collisions. 

• The overall effect of the non-reactive collisions is to randomize 

- the velocities of the molecules (Maxwell-Boltzmann distribution). 

- the positions of the molecules (spatially uniform or well-stirred), 

•  Then, instead of having to describe the system’s state as the 

position, velocity and species of each molecule, we need only give 

  ( )1( ) ( ), , ( )Nt X t X tX � … , 

  ( )iX t �  the number of iS  molecules at time t . 

But this well-stirred simplification, which . . . 

• ignores the non-reactive collisions, 

• truncates the definition of the system’s state, 

 . . . comes at a price: 

( )tX  must now be viewed as a stochastic process. 

� But in fact, the system was never deterministic to begin with. 

 Even if molecules moved according to classical mechanics . . .  

-  Unimolecular reactions always involve randomness (QM).  

-  Bimolecular reactions usually do too.  

-  A system of many colliding molecules is so sensitive to initial 

conditions that, for all practical purposes, it evolves “randomly”.  

-  The system is not isolated.  It’s in a heat bath, which keeps it “at 

temperature T ” – via essentially random interactions. 
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  For well-stirred systems, each jR  is completely characterized by … 

• a propensity function ( )ja x :  Given the system is in state x , 

( )ja dtx �  probability that one jR  event will occur in the next dt . 

 - The existence and form of ( )ja x  follow from molecular physics. 

• a state change vector ( )1 , ,j j N jvν≡ν … : 

 i jν �  the change in iX  caused by one jR  event. 

     - jR  induces j→ +x x ν .  { }i jν ≡  the “stoichiometric matrix.” 
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   Two exact, rigorously derivable consequences . . . 

 

� 1.  The chemical master equation (CME): 
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• { }0 0 0 0( , | , ) Prob ( ) , given ( )P t t t t= =x x X x X x�  for 0t t≥ . 

• Follows from the probability statement 
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• But the CME is usually too hard to solve. 

• Averages:  ( ) 0 0( ) ( ) ( , | , )f t f P t t∑
x

X x x x� . 

If we multiply the CME through by x and then sum over x, we find 
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• If there were no fluctuations, 

   ( ) ( ) ( )( ) ( ) ( )j j ja t a t a t= =X X X , 

 and the above would reduce to: 
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 -  This is the reaction-rate equation (RRE). 

 -  It’s usually written in terms of the concentration ( ) ( )t t ΩZ X� . 

 

� But as yet, we have no justification for ignoring fluctuations. 
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� 2.  The stochastic simulation algorithm (SSA):  

A procedure for constructing sample paths or realizations of ( )tX . 

Idea:  Generate properly distributed random numbers for 

 -  the time τ  to the next reaction, 

 -  the index j  of that reaction. 

• ( , | , )p j t dτ τx �  probability, given ( )t =X x , that the next reaction 

      will occur in [ , )t t dτ τ τ+ + + , and will be jR . 

 0( ) ( )jP a dτ τ= × x ,  0 ( ) Pr(  reactions in time )P noτ τ� . 

( )0 0 0( ) ( ) 1 ( )P d P a dτ τ τ τ+ = × − x ,  where  0 1
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M
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Thus, 

 - τ  is an exponential random variable with mean 01 ( )a x , 

 - j  is an integer random variable with probabilities 0( ) ( )ja ax x . 

  The “Direct” Version of the SSA 

1.  In state x at time t, evaluate 1( ), , ( )Ma ax x… , and 0

1
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2.  Draw two unit-interval uniform random numbers 1r  and 2r , and 

compute τ  and  j  according to 

• 
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• j = the smallest integer satisfying 2 0
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3.  Replace  t t τ← +   and  j← +x x ν . 

4.  Record ( , )tx .  Return to Step 1, or else end the simulation. 
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A Simple Example:  1
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, then update: 

  1 1, 1t t x xτ← + ← − . 
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 The SSA . . . 

• Is exact. 

• Does not entail approximating “dt” by “ t∆ ”. 

• Is logically on par with the CME (but is not a method for numerically 

solving the CME). 

• Is procedurally simple, even when the CME is intractable. 

• Comes in a variety of implementations … 

 -  Direct Method (Gillespie, 1976) 

 -  First Reaction Method (Gillespie, 1976) 

 -  Next Reaction Method (Gibson & Bruck, 2000) 

 -  First Family Method (Lok, 2003) 

 -  Modified Direct Method (Cao, Li & Petzold, 2004) 

 -  Sorting Direct Method (McCollum, et al. 2006) 

• Remains too slow for most practical problems:  Simulating every 

reaction event one at a time just takes too much time if any reactants 

are present in very large numbers. 
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We would be willing to sacrifice a little exactness . . . 

  . . . if that would buy us a faster simulation. 

  Tau-Leaping 

• Approximately advances the process by a pre-selected time τ , 

which may encompass more than one reaction event. 

• Key:  The definition of “the Poisson random variable with mean aτ ”: 

( )aτP �  the number of events that will occur in a time τ , 

 given that the probability of an event in any dt  is adt  

 where a  can be any positive constant. 

• With ( )t =X x , let us choose τ  small enough to satisfy the 

  Leap Condition:  Each ( )ja ≈x  constant in [ , ]t t τ+ . 

• Then:  The number of jR  firings in [ , ]t t τ+  ≈  ( )( )ja τxP . 

 ( )
1

( ) ( )
M

j j j

j

t aτ τ
=

+ +∑X x xP ν�  

- Practical Implementation of Tau-Leaping - 

• We have two control parameters, ε  and cn : 

- To satisfy the Leap Condition, restrict τ  so that ,j ja a jτ∆ ε≤ ∀ . 

- To avoid populations <0, allow only one firing of all critical reactions 

(�  reactions that are within cn  firings of exhausting any reactant). 

• We take ( )min ,τ τ τ′ ′′= , where: 

- τ ′  maximally satisfies the Leap Condition for firings of the non-

critical reactions.  (We have a fairly efficient way to estimate τ ′ .) 
- τ ′′  is the time to the next critical reaction .  ( Generate τ ′′  by 

applying the SSA to the critical reactions.) 

• For each non-critical jR , generate jk  as a sample of ( )( )ja τxP . 

• If τ τ′ ′′< :  Set the jk ’s for all the critical jR ’s to 0. 

If τ τ′′ ′≤ :  Use the SSA to determine which critical reaction fires, set 

its jk  to 1, and set all other critical jk ’s to 0. 

• Leap:  t t τ← +   and  
1

M

j j

j

k
=

← +∑x x ν . 

� Becomes the SSA if all reactions are critical ( cn →∞ ). 
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Tau-Leaping Discrete & Stochastic

( )  Prob that  will fire in next j ja dt R dtx �

CME SSA

{ }( ) const over , ja jτ− ≈ ∀x

Speeding up Tau-Leaping: The Langevin Equation 

• Two math facts: 

 -  If 1m� , then ( ) ( , )m m m≈P N . 

 -  2( , ) (0,1)m mσ σ= +N N . 

• So, with ( )t =X x , suppose we can choose τ  small enough to satisfy 

the Leap Condition,  yet also large enough that ( ) 1,ja jτ ∀x � . 

Then . . . ( )
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  ( ) ( )
1 1

( ) (0,1)
M M

j j j j j

j j

t a aτ τ τ
= =

+ + +∑ ∑X x x x Nν ν�  

• This is the Langevin leaping formula. 

• It’s faster than the ordinary tau-leaping formula, because 

 -  ( ) 1ja τx �  means lots of reaction events get leapt over in τ ; 

 -  normal random numbers can be generated faster than Poissons. 

• It directly implies, and is entirely equivalent to, a SDE called 

     the chemical Langevin equation (CLE): 

  ( ) ( )
1 1

( )
( ) ( ) ( )

M M

j j j j j

j j

d t
a t a t t

dt
Γ

= =

+∑ ∑X
X Xν ν� . 

   -  Gaussian white noise: 
0 0

(0,1) 1
( ) lim lim 0,

dt dt
t

dtdt
Γ

+ +→ →

 ≡  
 

N
N� . 

   -  Satisfies ( ) ( ) ( )j j j jt t t tΓ Γ δ δ′ ′′ ′= − . 

• Our discrete stochastic process ( )tX  has now been approximated as a 

continuous stochastic process. 

Tau-Leaping Discrete & Stochastic

Continuous & Stochastic

( )  Prob that  will fire in next j ja dt R dtx �

CFPE

CME SSA

{ }( ) const over , ja jτ− ≈ ∀x

CLE

{ }( ) 1,ja jτ− ∀x �

*

- J. Chem. Phys. 113:297 (2000)

- Am. J. Phys. 64:1246 (1996)

- J. Phys. Chem. A 106:5063 (2002)

*
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The Thermodynamic Limit 

Def:  All iX →∞ , and Ω →∞ , with iX Ω  constants. 

• 
1 1

1
1 2 1 2 2

In the thermodynamic limit, 

 's grow like (system size).

j j
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• So in the thermodynamic limit, we see that in the CLE 

       ( ) ( )
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( ) ( ) ( )

M M

j j j j j

j j

d t
a t a t t

dt
Γ

= =
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X

X Xν ν� , 

 - the deterministic term grows like (system size), 

 - the stochastic term grows like (system size)
1/2

. 

• ⇒Rule of Thumb: Relative fluctuations die off as (system size)
–1/2

. 

• At the thermodynamic limit the stochastic term disappears, leaving 

 ( )
1

( )
( )

M

j j

j

d t
a t

dt =
∑

X
Xν�  … the RRE … derived! 

    ( )tX  has now become a continuous deterministic process. 

Tau-Leaping Discrete & Stochastic

Continuous & Stochastic

Continuous & Deterministic
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Complications from “Stiffness” 

• Some jR  may be very fast, others very slow. 

• Some iX  may be very fast, others very slow. 

• “Fast” and “slow” are interconnected – not  easy to separate. 

• Often manifests as dynamical stiffness, a known ODE problem. 

• SSA still works, and is exact.  But it’s agonizingly slow. 

• Tau-leaping remains accurate, but the Leap Condition restricts τ  to 

the shortest (fastest) time scale of the system.  Still very slow. 

• One approach:  Implicit Tau-Leaping  

- A stochastic adaptation of the implicit Euler method for ODEs. 

• Another approach:  The Slow-Scale Stochastic Simulation Algorithm 

- Skips over the  fast reactions and simulates only the slow reactions, 

using specially modified propensity functions.  An adaptation of the 

partial equilibrium / quasi steady-state method for RREs. 
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