STOCHASTIC CHEMICAL KINETICS	
	Dan Gillespie
	Dan T Gillespie Consulting GillespieDT@mailaps.org
Current Support:	University of California at Santa Barbara (DOE) Caltech (Beckman Institute / BNMC) Caltech (NIGMS)
Past Support:	Molecular Sciences Institute (Sandia / DOE) Caltech (DARPA / AFOSR)

For well-stirred systems, each R_j is completely characterized by ... • a propensity function $a_j(\mathbf{x})$: Given the system is in state \mathbf{x} , $a_j(\mathbf{x}) dt \triangleq probability$ that one R_j event will occur in the next dt. • The existence and form of $a_j(\mathbf{x})$ follow from molecular physics. • a state change vector $\mathbf{v}_j \equiv (v_{1j}, ..., v_{Nj})$: $v_{ij} \triangleq$ the change in X_i caused by one R_j event. • R_j induces $\mathbf{x} \to \mathbf{x} + \mathbf{v}_j$. $\{v_{ij}\} \equiv$ the "stoichiometric matrix." Examples: $S_1 + S_2 \stackrel{c_1}{\longrightarrow} 2S_1$: $\begin{cases} a_1(\mathbf{x}) = c_1 x_1 x_2, \quad \mathbf{v}_1 = (+1, -1, 0, ..., 0) \\ a_2(\mathbf{x}) = c_2 \frac{x_1(x_1-1)}{2}, \quad \mathbf{v}_2 = (-1, +1, 0, ..., 0) \end{cases}$

Two exact, rigorously derivable consequences . . .
> 1. The *chemical master equation* (CME):

$$\frac{\partial P(\mathbf{x},t | \mathbf{x}_0, t_0)}{\partial t} = \sum_{j=1}^{M} \left[a_j (\mathbf{x} - \mathbf{v}_j) P(\mathbf{x} - \mathbf{v}_j, t | \mathbf{x}_0, t_0) - a_j (\mathbf{x}) P(\mathbf{x}, t | \mathbf{x}_0, t_0) \right].$$
• $P(\mathbf{x},t | \mathbf{x}_0, t_0) \triangleq \operatorname{Prob} \left\{ \mathbf{X}(t) = \mathbf{x}, \text{ given } \mathbf{X}(t_0) = \mathbf{x}_0 \right\} \text{ for } t \ge t_0.$
• Follows from the *probability* statement

$$P(\mathbf{x},t + dt | \mathbf{x}_0, t_0) = P(\mathbf{x},t | \mathbf{x}_0, t_0) \times \left[1 - \sum_{j=1}^{M} \left(a_j (\mathbf{x}) dt \right) \right] + \sum_{j=1}^{M} P(\mathbf{x} - \mathbf{v}_j,t | \mathbf{x}_0, t_0) \times \left(a_j (\mathbf{x} - \mathbf{v}_j) dt \right).$$
• But the CME is usually too hard to solve.

• Averages: $\langle f(\mathbf{X}(t)) \rangle \triangleq \sum_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{x}, t | \mathbf{x}_0, t_0).$

If we multiply the CME through by \mathbf{x} and then sum over \mathbf{x} , we find

$$\frac{d\left\langle \mathbf{X}(t)\right\rangle}{dt} = \sum_{j=1}^{M} \boldsymbol{\nu}_{j}\left\langle a_{j}\left(\mathbf{X}(t)\right)\right\rangle$$

• If there were no fluctuations,

$$\langle a_j(\mathbf{X}(t)) \rangle = a_j(\langle \mathbf{X}(t) \rangle) = a_j(\mathbf{X}(t)),$$

and the above would reduce to:

$$\frac{d\mathbf{X}(t)}{dt} = \sum_{j=1}^{M} \boldsymbol{\nu}_{j} a_{j} \left(\mathbf{X}(t) \right).$$

- This is the reaction-rate equation (RRE).
- It's usually written in terms of the *concentration* $\mathbf{Z}(t) \triangleq \mathbf{X}(t)/\Omega$.
- But as yet, we have *no justification* for ignoring fluctuations.

2. The stochastic simulation algorithm (SSA):
A procedure for constructing sample paths or realizations of X(t).
Idea: Generate properly distributed random numbers for

the time τ to the next reaction,
the index j of that reaction.

p(τ, j|x,t) dτ ≜ probability, given X(t) = x, that the next reaction will occur in [t+τ,t+τ+dτ), and will be R_j.
= P₀(τ)×a_j(x)dτ, P₀(τ) ≜ Pr(no reactions in time τ).
P₀(τ+dτ) = P₀(τ)×(1-a₀(x)dτ), where a₀(x) ≜ ∑₁^M a_{j'}(x).
Implies dP₀(τ)/dτ = -a₀(x)P₀(τ). Solution: P₀(τ) = e^{-a₀(x)τ}.
∴ p(τ, j|x,t) = e^{-a₀(x)τ} a_j(x) = a₀(x)e^{-a₀(x)τ} × a_j(x)/a₀(x).

Thus,

τ is an exponential random variable with mean 1/a₀(x),
j is an integer random variable with probabilities a_i(x)/a₀(x).

$$A Simple Example: S_1 \longrightarrow 0.$$

$$a_1(x_1) = c_1 x_1, \quad v_1 = -1. \text{ Take } X_1(0) = x_1^0.$$

$$\underline{RRE}: \frac{dX_1(t)}{dt} = -c_1 X_1(t). \text{ Solution is } X_1(t) = x_1^0 e^{-c_1 t}.$$

$$\underline{CME}: \frac{\partial P(x_1, t | x_1^0, 0)}{\partial t} = c_1 \Big[(x_1 + 1) P(x_1 + 1, t | x_1^0, 0) - x_1 P(x_1, t | x_1^0, 0) \Big].$$
Solution: $P(x_1, t | x_1^0, 0) = \frac{x_1^0 !}{x_1 ! (x_1^0 - x_1) !} e^{-c_1 x_1 t} (1 - e^{-c_1 t})^{x_1^0 - x_1} (x_1 = 0, 1, ..., x_1^0)$
which implies $\langle X_1(t) \rangle = x_1^0 e^{-c_1 t}, \text{ sdev} \{ X_1(t) \} = \sqrt{x_1^0 e^{-c_1 t} (1 - e^{-c_1 t})}.$

$$\underline{SSA}: \text{ Given } X_1(t) = x_1, \text{ generate } \tau = \frac{1}{c_1 x_1} \ln(\frac{1}{r}), \text{ then update:}$$

$$t \leftarrow t + \tau, \quad x_1 \leftarrow x_1 - 1.$$

The SSA ...

- Is *exact*.
- Does *not* entail approximating "dt" by " Δt ".
- Is logically on par with the CME (but is *not* a method for numerically solving the CME).
- Is *procedurally simple*, even when the CME is intractable.
- Comes in a variety of implementations ...
 - Direct Method (Gillespie, 1976)
 - First Reaction Method (Gillespie, 1976)
 - Next Reaction Method (Gibson & Bruck, 2000)
 - First Family Method (Lok, 2003)
 - Modified Direct Method (Cao, Li & Petzold, 2004)
 - Sorting Direct Method (McCollum, et al. 2006)
- *Remains too slow for most practical problems*: Simulating *every* reaction event *one* at a time just takes too much time if any reactants are present in very large numbers.

$$\mathbf{X}(t+\tau) \doteq \mathbf{x} + \sum_{j=1}^{M} \mathcal{P}_j\left(a_j(\mathbf{x})\tau\right) \boldsymbol{\nu}_j$$

$$\mathbf{X}(t+\tau) \doteq \mathbf{x} + \sum_{j=1}^{M} \boldsymbol{\nu}_{j} a_{j}(\mathbf{x}) \tau + \sum_{j=1}^{M} \boldsymbol{\nu}_{j} \sqrt{a_{j}(\mathbf{x})} \mathcal{N}_{j}(0,1) \sqrt{\tau}$$

- This is the *Langevin leaping formula*.
- It's faster than the ordinary tau-leaping formula, because
 - $a_i(\mathbf{x})\tau \gg 1$ means *lots* of reaction events get leapt over in τ ;
 - normal random numbers can be generated faster than Poissons.
- It directly implies, and is entirely equivalent to, a SDE called the *chemical Langevin equation* (CLE):

$$\frac{d\mathbf{X}(t)}{dt} \doteq \sum_{j=1}^{M} \boldsymbol{\nu}_{j} a_{j} \left(\mathbf{X}(t) \right) + \sum_{j=1}^{M} \boldsymbol{\nu}_{j} \sqrt{a_{j} \left(\mathbf{X}(t) \right)} \Gamma_{j}(t) \ .$$

- Gaussian white noise: $\Gamma(t) \triangleq \lim_{dt \to 0^+} \frac{\mathcal{N}(0,1)}{\sqrt{dt}} \equiv \lim_{dt \to 0^+} \mathcal{N}\left(0, \frac{1}{dt}\right).$

- Satisfies
$$\langle \Gamma_j(t) \Gamma_{j'}(t') \rangle = \delta_{jj'} \delta(t-t')$$
.

• Our *discrete stochastic* process **X**(*t*) has now been *approximated* as a *continuous stochastic* process.

Complications from "Stiffness"

- Some R_i may be very fast, others very slow.
- Some X_i may be very fast, others very slow.
- "Fast" and "slow" are interconnected not easy to separate.
- Often manifests as *dynamical stiffness*, a known ODE problem.
- SSA still works, and is exact. But it's agonizingly slow.
- Tau-leaping remains accurate, but the Leap Condition restricts *τ* to the shortest (fastest) time scale of the system. Still very slow.
- One approach: Implicit Tau-Leaping

 A stochastic adaptation of the implicit Euler method for ODEs.
- Another approach: The Slow-Scale Stochastic Simulation Algorithm

 Skips over the fast reactions and simulates only the slow reactions, using specially modified propensity functions. An adaptation of the partial equilibrium / quasi steady-state method for RREs.

