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Abstract:  The time evolution of a well-stirred chemically reacting system is
traditionally modeled by a set of coupled ode's called the reaction rate equations (RRE).
The resulting picture of continuous deterministic evolution is, however, valid only for
infinitely large systems. That condition is adequately approximated in most
"macroscopic” chemical systems. But in biological systems formed by single living cells,

the small population numbers of some reactant species can result in dynamical behavior

that is noticeably discrete rather than continuous, and noticeably stochastic rather than
deterministic. In that case, a more accurate mathematical modeling is obtained by using
the machinery of Markov process theory, specifically, the chemical master equation
(CME) and the stochastic simulation algorithm (SSA). This talk will review the
theoretical foundations of stochastic chemical kinetics, and then discuss some recent
efforts to (1) approximate the SSA by a faster simulation procedure, and (2) establish the
formal connection between the CME/SSA description and the RRE description.
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CHEMICAL KINETICS

e N chemical species S,,...,S,. M reaction channels R,,....R,,.
Eg,the N=M =2 system: §,+S, =—=28,
)

e Assume system has constant volume (2, and constant temperature 7.
Also assume system is well-stirred (spatially homogeneous).

Let X,(1) = the number of S, molecules in the system at time .

(X,(0),..., X (1)) = X(¢), the state of the system at time 7.

» The Problem: Given X(7,) =Xx,, find X(¢) for r >1,.



The Traditional Approach

Asserts that X(#) evolves in time according to a set of coupled, first-
~rdor Avdinary Adiffovontial onriatinmne of tha farm
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dX .
[ ; —
Mdt = f.(X},....Xy) (i=1...,N),

where the f; are determined by the forms of the M reaction channels.

Called the reaction rate equations (RRE).
Usually written in terms of the concentrations, Z, = X,/ .

RRE = X(¥) is a continuous, deterministic process.



But in fact. ..

o X(?) is not continuous; it’s discrete:
¢ Molecules come in whole numbers.

o X(?) is not deterministic; it’s stochastic:

¢ Only if we were to define the system’s state as the positions and the
velocities of all the molecules (and assume Newtonian mechanics)
could we regard the system as being “deterministic”.

¢ But even then, the extreme sensitivity to initial conditions will
render the system effectively stochastic — like a tossed coin.

¢ Chemical reactions occur as discrete events, as a result of molecular
collisions that cannot be precisely predicted.
¢ At best, we can predict only the probability that a reaction event
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will occur.
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STOCHASTIC CHEMICAL KINETICS

Each elemental reaction channel R, is defined by two quantities:

e apropensity function a,(x), where a,(x)dt 2 the probability, given

X(#)=x, that one R, reaction event will occur in [#,7+dt);

= A .
e astate change vector v; = (Vlj,...,ij), where v,; = the change in
41 [l S IR meiiemeard s o~ D PR IR &
tic o; population causcd Dy olc I(J ICcaclioll CvVCOIll
Eg.,
a,(X) = ¢ x;X,, v, =(+1,-1,0,...,0)
—4a N
2 az(X)202'——2——“‘“‘, V2= _1,+1,0,...,O)

» Implication: X(¢) is a jump Markov process (a continuous-time,
discrete-state, past-forgetting, stochastic process).



Two Approaches to Stochastic Chemical Kinetics

e An analytical approach, and a simulation approach.

e They are logically equivalent — both follow rigorously from the same
stochastic premise.

e They are exact for well-stirred (or self-stirring) systems.



THE ANALYTICAL APPROACH

Focuses on the probability density function of the random variable
X(?) , namely

P(x,1]X,1,) = Prob{X(¢) = x, given that X(f,) = x,} .
Can prove that P obeys the time-evolution equation

OP(X,1]xy,1)

M
2 Z[aj(x—vj)P(x—vj,tlxo,to)—aj(x)P(x,t|x0,t0)]

J=1

e (alled the chemical master equation (CME).
e In principle, it completely determines P(X,7|x,,4,), and hence X(7).

e In practice, it’s impossible to solve for all but the simplest of systems.



Derivation of the Chemical Master Equation

Write Prob {X(t+dt) = x} as the sum of the probabilities of all

(mutually exclusive) paths leading to state x at time #+df via possible
states at time #:

P(x,t +dt|x,,1,) = P(X,1]X,1,) X {1 f(“ (X)dt)}

j=l1
-Ai / \
+LP(x—vj,t|x0,tO)><(aj(x—vj)dt)
J=1 .

Subtract P(X,?|X,,,), divide through by dr, then let df > 0 = CME.

Note: Invocation of the Addition Law here relies on the fact that dr is so
small that no more than one reaction event will ever occur in any d.



THE SIMULATION APPROACH

Focuses on the function p(z, j|x,t), defined by

p(t, j|x,t)dt = the probability, given X(¢) = x, that the next reaction
in the system will occur in the infinitesimal time interval
[t+7,t+7+d7), and will be an R, reaction.

Can prove that p is given by
M
p(r, jIx,t)=a;(x) exp(—ay(x)7), where a,(x)= Z a,(x).
=

e Implies: The time 7 to the next reaction event is an exponentially
distributed random variable with mean 1/g,(x), and the channel index

J of that reaction is an integer random variable with prob a,(x) / a,(X) .

e It’s easy to generate on a computer (pseudo)random samples of 7 and
according to this prescription.



Derivation of the Next-Reaction Probability Density Function

Let P,(r|x,r) £ the probability, given X(¢) = x, that no reactions will
occur in time interval [7,7+7). Then

p(z, jIx.f)de = By(z|x.0)x(a,(x)dz ),
SO p(z, jIx,1) =a,;(x) F{(r]|x,1).
To calculate 7, (7|x,?), observe that it must satisfy

Py (r+dr|x,1) = I’O(Tlx,t)x{l — f(aj,(x)dr)} = PO(TIX,Z‘)[I —a, (x)dr] ,
R

whence dPo(;Ix,t) =—a,(x) [, (7]x,1).
T

The solution to this ODE for the initial condition F,(r7=0|x,7)=1 is

By(z|x,t) =exp(—ay(X) 7). QED



The Stochastic Simulation Algorithm (SSA)
An explicit, exact procedure for constructing a numerical realization

of the stochastic process X(¢). The “direct” version of the SSA 1is:

1.
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Draw two unit-interval uniform random numbers 7 and r,, and

compute 7 and j according to

e 7= In| — |,
ay (X) h
J
o j=the smallest integer satistfying Z a (X) >71, a,(X).
=

Effect the next reaction: Replace t<«1+7 and X< Xx+v,.

. Record (x,7). Then return to Step 1, or else end the simulation.



The Stochastic Simulation Algorithm ...

Numerically simulates the time evolution of a well-stirred chemically
reacting system in a way that accurately reproduces all effects of
naturally occurring randomness.

Does not entail approximating a “dt” by a “ At ™.
Is procedurally simple, even for systems whose CME is intractable.

Has been redesigned to be faster and more efficient (though more
complicated to code) by M. Gibson and J. Bruck [ J. Phys. Chem. A
104, 1876 (2000)]

Remains too slow for most practical problems: Since it simulates
every reaction event, one at a time, it can take a very long time to
execute if any reactant is present in very large numbers — as is usually
the case.



WHY BOTHER?

e For most practical chemical systems the molecular populations are very
large, and the phenomenological RRE,

T3 w0 (X(0),
a5

is accurate and fast.
e But in small biochemical systems (like the inside of a living cell) it can

hannan that cnmo ~ritinal roaantant cnariag ara nracant 1 /n h
nappen wat some Crivcai réacfiant SpECics are présent i LtOW numoers.

Then the inherent stochasticity of the system becomes noticeable, and
the deterministic RRE can be inaccurate and misleading.

» For such systems, we must instead use either the CME or the SSA.



TWO QUESTIONS:

e 2. How does it happen that the rigorous but computationally
intractable CME,

M
OP(X,1]Xy,%)) _ Z[aj(x—vj)P(X““VleXo»fo)“aj(X)P(X’”XO’tO)]’
P

ot

segues for “large” systems to the heuristic but computationally
efficient RRE,

dX(t) Zv (X(1))?



Tau-Leaping

An approximate, accelerated stochastic simulation procedure.

Advances the process by a pre-selected time 7 , which may encompass

tr
more than one reaction event.

The size of 7 is limited by the Leap Condition: The changes in the
propensity function values during the leap must be “small”.

Accelerated simulation occurs whenever 7 can satisty the Leap
Condition, yet encompass many reaction events.

But must use with caution! Leap over only the “unimportant”
reactions, not the “important™ ones.



Key Ideas Underlying Tau-Leaping

e For positive constants a and 7 , the Poisson random variable P(a,t) 1s

defined as the number of “events” that will occur in time 7, given that
the probability of an event occurring in any infinitesimal dt 1s adl .

o Therefore, if X(¢#)=x, and 7 is such that a,(x) ~ constant in [£,7+7],
then the number of R reactions that will occur in [7,7+7] is
(approximately) P (a (X), z') :

e Numerical procedures exist for generating sample values of P(a,7)
[Press, et al., Numerical Recipes: The Art of Scientific Computing].

A way has been developed to estimate in advance the /argest 7 that is
consistent with the Leap Condition.



A Method for Choosing 7
If X(7) = x, then the state change induced by a time leap 7 is

M M
X(l+r)—xéA(r,x):ZK].(X,T)UJ zZPj(aj(x),r)vj
j=1 j=1

The resultant change in propensity function a j is

( X)

l

Aa(z, X) = a,

A(7,X)
N a M
( Z Po(a;(x).1)V,;

i=1 i =]

Aa (7,x) ~ qu (x) Py(a,(x),7), where f . (x) = Z

X da, (x)
ox,

1

M M
So, (A, (r. X))~ Y £, (Pula, (.20 =D £, (%) (a, (x)7),
J'=! =

M M
var{da, (z.x)} = 3 £ (x) var{Py(a; (x).0)} = Y f7,(x) (a,(x)z).
J'=1 J'=1



» Satisfy the Leap Condition by requiring the absolute mean and the
standard deviation of Aa,(7,x) to be <& a,(x) Vj, where £ <1 is an

accuracy control parameter. Find that the largest 7 satisfying this
requirement 1s
2 2
r = Min SCIO(X) & a (X)
s ()| o (x)
N da, (x)

where, with f (x) 2 Z

M
002 £, 0a,x. ML 12040,
J'= J'=1

The functions f; ., x;,and 0'12. can be explicitly computed prior to

simulation, and they will usually be easy to evaluate for a given x.



The Tau-Leap Simulation Algorithm

1. In state x at time 7, choose 7 so that the expected change in every
propensity function in [7,4+7] 1s < ga,(X) .

e 2. Generate the number of firings &, of channel R, in [z,/+7] as

ky=Pla,(x).7) (j=1....M).

M
3. Leap: Replace f<«t+7 and x<—x+2kjvj.
j=1

4. Record (x,7). Then return to Step 1, or else end the simulation.



monomer X1, unstable dimer X2, stable dimer X3
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monomer X1, unstable dimer X2, stable dimer X3
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Decaying-Dimerizing

Reaction Set

S1-->0

S1+S1-->S2
S2-->S1+8S1
S2 --> S3

cl=1

c2 =0.002
c3=0.5
c4 =0.04

- Explicit Tau Leaping Run (Epsilon=0.03)
- 1 leap per plotted dot.

- Intially: X1=100,000; X2=X3=0.

- Last reaction at T=44.52.

- Final X(3)=17,033.

- 592 leaps total.
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Tau-Leaping usually speeds things up, but. ..
o Selecting the largest 7 consistent with the Leap Condition entails some
computational overhead.

e Generating Poisson random numbers is more time consuming than
generating the exponential random numbers used by the SSA.

Care must be taken not to leap over “important” reactions.

Additional strategies are needed to cope with stiffness (widely varying
time-scales).

> By itself it’s not the final answer. But it provides a context for such.



How does the CME/SSA segue to the RRE for “large” systems?

e We saw in tau-leaping that, if X(#) =x and 7 is macroscopically
infinitesimal (in that none of the a;’s change “noticeably” during 7),

then to a good approximation,

Ma
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where the P, ’s are statistically independent Poisson random variables.

e Suppose it also happens that every reaction channel R, fires many

more times than once in the next 7. (This nearly always happens
whenever all the reactant molecular populations are /arge enough.)



e This would mean, since <7? (a (x), r) > =a,(x)7, that a (x)z>1 V.

e But when ar > 1, can approximate P(a,7)~ N (ar,ar) ; hence,

X(t+71) =x+§NJ (aj(x)r,aj(x)z')uj
J=1

M 1/2
= x+2{aj(x)z' + [aj(x)z']/ NJ(O,I)} v,
j=1
e (ollecting terms, and remembering that x = X(¢), this is

X(1 +7) = X(z‘)+2v (X(0) T+Zv Ja, (XO) N0,z

We have just proved the following . . .



Theorem: If dr is a macroscopic infinitesimal, in that during dt .
e no propensity function changes its value significantly, yet
e e¢very reaction channel fires many more times that once,

then we can approximate the ¢ to t +dt system update by
X(t+dt) = X(0)+ Y v,a, (XO)dt + Y v, Ja, (XO)N, @)V .
Jj=1 J=1

Here, the N () are statistically independent, temporally uncorrelated,

normal random variables with means 0 and variances 1.

» This is the Chemical Langevin Equation (CLE).
» It approximates X(t) as a continuous (versus a jump) Markov process.

> Itis mathematically the same as the SDE
dX(” Zv (X)) +Zv Ja (XO) ;@)
Jj=1

where <r].(t) r )>=5H, 5(z—z) (j,j'=1,...,M).




In the theory of continuous Markov processes, every Langevin

uation for X(t \ imvlies a Fokker-Planck equation for P(x.t!1x..t.)
B e JIv AL LA™ .lJ.J..ltJ.LJ. \1(/&%&0(}'1« AN A ra \A,b |AO,LO/ .

For the chemical Langevin equation (CLE)

X(t+d)=X(0)+ Y v,a,(XO)dt +Y v, Ja, (X(O) N, )Vt .
J=1 j=1
the corresponding chemical Fokker-Planck equation (CFPE) can be

P N 3
a (X,thO,IO):—Za_a—— ZV.-CI-(X) P(Xst|X0’t0)

‘ oy \ gy
2
L Vi J(X)JP(X Xy,2,)

(i<i")

N 82 M
+Z———-—— ZVU Uaj(x) P(x,t]x,,1,)
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Now consider . . . The Thermodynamic Limit.

Definition: All X, — o0, and 2 — oo, with X, /£ — constant .

e Can prove that, in this limit, a// propensity functions grow /inearly with
the system size.

e Therefore, in the CLE
X(t +df) = X(t)+2vja] (X(0))dr +Zv Ja, (XO) N, @)Vt .

the deterministic term grows like X(t) , whlle the stochastic term
grows like \/X(¢) . So in the thermodynamic limit, the CLE reduces to

X(t+dt) = X(t) + Z v a, (X(0))dr .

j=1
e This is how the RRE arises in stochastic chemical Kinetics.



A Hierarchy of Schemes for Modeling Chemical Kinetics

1. Molecular Dynamics (MD)

Tracks the position and velocity of every molecule.

Simulates every collision, non-reactive as well as reactive.
Shows changes in species populations and spatial concentrations.
Is essentially exact.

Is extremely s/ow for realistic systems.

2. Stochastic Simulation Algorithm (SSA)

QQIIYVYVYS A +1’\ L\Q 1/!/\1 1/'/)/Y/DZ'.

A
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well-snrred; hence, assumes the system is spatial homogeneous.

Simulates only the reactive collisions, i.e., every chemical reaction

event.

Tracks only the species populations.
Is exactly equivalent to the Chemical Master Equation (CME).

Is much faster than MD.



3. Tau-Leaping
e An approximation to the SSA.
e Advances time by a pre-selected © during which no propensity
function changes its value “noticeably” and more than one reaction
may OCcCur.

e Number of R, firingsin 7 is approximated as P(a I (x),z').
e s faster than the SSA if many reactions occur in 7 .

4. Chemical Langevin Equation (CLE)

e A snecial case nfTrnl ,f)fnjlng
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e Applies whenever 7 is such that a,(x)7>1 for every R;.
e Number of R, firings in 7 is approximated as A (a (X)T,a, (x)r).

e Is an SDE that approximates the jump Markov process X(7) of the
CME/SSA by a continuous Markov process.
e s faster than ordinary Tau-Leaping.



5. Reaction Rate Equation (RRE)
e The thermodynamic limit of the CLE.
e The (random) diffusion term in the CLE becomes negligibly small
compared to the (deterministic) drift term.
e The CLE then reduces from an SDE to an ODE.
e Defines a continuous deterministic process.

e Computationally the fastest.

The Challenge:

To build a seamless, easy-to-use software package that automatically
selects the optimal appropriate method to advance the state in time, and
then executes that method correctly and efficiently.



