From PLDE to FDS

A
2 > regular domain D; is identified
‘ with qualitative state

B RIS s=(st,...,sp), integer values

Do+ Dn describe position w.r.t. thresholds
O """""""" » trajectories tend towards target
Do+ D value ®(D)

> » target value position in a regular

domain can be described by
corresponding state s®(D)
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From PLDE to FDS

A
xT
? » regular domain Ds is identified
‘ with qualitative state
R IR s=(st,...,sp), integer values

Do+ Dn describe position w.r.t. thresholds
] e
0 § > trajectories tend towards target
Doy Dio value ®(D)
> » target value position in a regular
domain can be described by
corresponding state s®(P)

Describe the system dynamics by a function
f: {s | Ds regular domain} — {s | Ds regular domain}, s — s®(P)

Consider “trajectories” (s, f(s), f(f(s)),...)
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Discrete modeling

> system description by means of discrete functions

» including structural information: network components and dependencies
» capturing of interaction character and impact
— predicting/analyzing dynamics

Hypothesis: kinetic details of interactions less important than network organization
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Discrete modeling

> system description by means of discrete functions

» including structural information: network components and dependencies
» capturing of interaction character and impact
— predicting/analyzing dynamics

Hypothesis: kinetic details of interactions less important than network organization

Ingredients

> system with n components a; interpreted as variables in X; := {0,...,p;}
with p; € N
> state space X := Xy X --- X X

» nfunctions f; : X — X; capture rules to calculate future value of o; from
current value of its regulators

> system description: discrete function f = (fi,...,f;) : X = X

E.g. Boolean networks: p;=1foralli € {1,...,n}
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Dynamics

Consider f: X — X, X =[]_, X;, Xi={0,1,...,pi}, pi €N,
and dynamics  (f%(x))ken, X € M, with f' = f, fK = fo <1
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Dynamics
Consider f: X — X, X =[I_{ X;, Xi={0,1,...,pi}, pi € N, (FDS)
and dynamics  (f%(x))ken, X € M, with f' = f, fK = fo <1
State transition graph S(f) of f

> vertex set X (state space, exponential in n)
> edge set {(x,f(x)) | x € X} — synchronous update
> trajectories: infinite paths (x, f(x), f2(x),...) in S(f)
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Dynamics
Consider f: X — X, X =[I_{ X;, Xi={0,1,...,pi}, pi € N, (FDS)
and dynamics  (f%(x))ken, X € M, with f' = f, fK = fo <1
State transition graph S(f) of f

> vertex set X (state space, exponential in n)
> edge set {(x,f(x)) | x € X} — synchronous update
> trajectories: infinite paths (x, f(x), f2(x),...) in S(f)

Note conceptual differences to ODE/PLDE description:

explicit description of trajectories, trajectories can merge

Consequences of synchronous update and finite state space

> each trajectory “ends” in a cycle

— attractor: terminal strongly connected components of S(f)
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Finite dynamics (n=13)




Finite dynamics (n=13)

- - anattractor state
~ shown in detail

transient tree
and sub-trees
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Asynchronous update

0
State transition graph
> vertex set X
> edges x — x' iff X' =f(x)=x or ‘
x/ = x;+sgn(fi(x) — x;) forsome i € {1,...,n}
satisfying x; # fi(x) and x = x; for all j # i
(asynchronous update) (0, 0)491

» gradual activity level evolution
» all time delays are distinct
— more realistic for modeling e.g. biological systems

= non-deterministic representation of possible behaviors

» attractors and trajectories may differ from the synchronous case

asynchronous dynamics is more complex and harder to analyze
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Structure
Given f: X — X, X =[1L, X;, X;={0,1,...,p;}, , €N (FDS)

Interaction graph G(f)
> vertices represent network components
» directed edges capture interactions, may be labeled

» signs carry information on interaction character
» thresholds specify conditions on edge activity
— labeled interaction graphs may be multigraphs (parallel edges)
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Structure
Given f: X — X, X =[1L, X;, X;={0,1,...,p;}, , €N (FDS)

Interaction graph G(f)
> vertices represent network components
» directed edges capture interactions, may be labeled
» signs carry information on interaction character
» thresholds specify conditions on edge activity
— labeled interaction graphs may be multigraphs (parallel edges)
Deriving G(f) from f

> o — oy iff fy depends on the variable x;, i.e.,
there exists x € X with fi(x) # fi(X) where X; # x; and X = x; for all / # j

> signs and labels can also be derived mathematically from f

= G(f) represents functional network topology of f
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Modeling

Modeling specific systems often starts with structural information:

> translate data on regulatory processes into directed, possibly labeled
(multi)graphs

Definition An interaction (multi-)graph I is a finite (labeled) directed (multi)graph.
(Vertices are understood as variables.)

vertex: component (genes, proteins, chemical complexes,...), set of components
(similar function, identification {gene, RNA, protein},...), signal,...

edge: inhibiting/activating activity (TFs, enzymes,...), complex forming,
information flow,...

value: activity status, concentration, configuration,...

» translate behavioral rules into discrete function f: X — X

» for each component decide the impact of its predecessors in a given
state on its value — choice of parameters

Consistency: I = G(f)
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Exploring the Structure

Consider interaction graph / = (V, E)
Use graph theoretical characteristics and measures

» quantify organizational features of /

» importance of nodes
> reachability among nodes

» homogeneity/heterogeinity w.r.t. a given property

> relate to biological features

> robustness, sensitivity, control,...

» identify modules with characteristic function
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Degree distribution and clustering

> degree of a node: # of edges originating (outdegree) or ending
(indegree) in the node

> hubs: highest degree nodes

> degree distribution P(k): fraction of nodes with degree k
(indegree/outdegree distribution)
[cellular networks are often scale-free]

» neighborhood of a node v: set of nodes # v adjacent to v
(in/out-neighborhood)

» clique: completely connected subgraph

> clustering coefficient of a node: ratio of # of edges in neighborhood and
# of edges if neighborhood were a clique
[large average clustering coefficients indicate redundancy, cohesiveness;
observed in protein-protein interaction and metabolic networks]
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Paths and connectivity

> distance between two nodes: shortest path length connecting the nodes

» small world: average shortest path length of large networks stays small
[facilitates rapid spread of information in response to input; signal
transduction, protein interaction, metabolic networks]

> path redundancy [robustness]

> betweenness centrality of node v: ratio of # shortest paths from sto ¢
through v and total # of shortest sf-paths
[importance of a node in flow from sources to sinks]

> connectivity of the network: existence of paths between every pair of
nodes (distinguish directed/undirected graphs)

» strongly connected directed graphs: all node pairs connected in
both directions

» strongly connected components: maximal subgraphs that are
strongly connected — acyclic scc-graph with initial and terminal
components
[modularity of signaling networks]

Heike Siebert. FU Berlin. Molecular Networks WS 11/12



