
From PLDE to FDS
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with qualitative state
s = (s1, . . . ,sn), integer values
describe position w.r.t. thresholds

I trajectories tend towards target
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I target value position in a regular
domain can be described by
corresponding state sΦ(D)

Describe the system dynamics by a function

f : {s | Ds regular domain}→ {s | Ds regular domain}, s 7→ sΦ(D)

Consider “trajectories” (s, f (s), f (f (s)), ...)
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Discrete modeling

I system description by means of discrete functions

I including structural information: network components and dependencies
I capturing of interaction character and impact

→ predicting/analyzing dynamics

Hypothesis: kinetic details of interactions less important than network organization

Ingredients

I system with n components αi interpreted as variables in Xi := {0, . . . ,pi}
with pi ∈ N

I state space X := X1×·· ·×Xn

I n functions fi : X → Xi capture rules to calculate future value of αi from
current value of its regulators

I system description: discrete function f = (f1, . . . , fn) : X → X

E.g. Boolean networks: pi = 1 for all i ∈ {1, . . . ,n}
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Dynamics

Consider f : X → X , X = ∏
n
i=1 Xi , Xi = {0,1, . . . ,pi}, pi ∈ N , (FDS)

and dynamics (f k (x))k∈N, x ∈M, with f 1 = f , f k = f ◦ f k−1

State transition graph S(f ) of f

I vertex set X (state space, exponential in n)

I edge set {(x , f (x)) | x ∈ X} – synchronous update

I trajectories: infinite paths (x , f (x), f 2(x), . . .) in S(f )

Note conceptual differences to ODE/PLDE description:

explicit description of trajectories, trajectories can merge

Consequences of synchronous update and finite state space

I each trajectory “ends” in a cycle

→ attractor: terminal strongly connected components of S(f )
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Finite dynamics (n=13)
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Asynchronous update
(0, 2)

(0, 1)

(0, 0)

(1, 2)

(1, 1)

(1, 0)

State transition graph

I vertex set X

I edges x → x ′ iff x ′ = f (x) = x or

x ′i = xi + sgn(fi (x)− xi ) for some i ∈ {1, . . . ,n}
satisfying xi 6= fi (x) and x ′j = xj for all j 6= i

(asynchronous update)

I gradual activity level evolution

I all time delays are distinct

→ more realistic for modeling e.g. biological systems

⇒ non-deterministic representation of possible behaviors

I attractors and trajectories may differ from the synchronous case

asynchronous dynamics is more complex and harder to analyze
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Structure

Given f : X → X , X = ∏
n
i=1 Xi , Xi = {0,1, . . . ,pi}, pi ∈ N (FDS)

Interaction graph G(f )

I vertices represent network components

I directed edges capture interactions, may be labeled

I signs carry information on interaction character
I thresholds specify conditions on edge activity

→ labeled interaction graphs may be multigraphs (parallel edges)

Deriving G(f ) from f

I αj → αk iff fk depends on the variable xj , i.e.,

there exists x ∈ X with fk (x) 6= fk (x̃) where x̃j 6= xj and x̃l = xl for all l 6= j

I signs and labels can also be derived mathematically from f

⇒ G(f ) represents functional network topology of f
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Modeling

Modeling specific systems often starts with structural information:

I translate data on regulatory processes into directed, possibly labeled
(multi)graphs

Definition An interaction (multi-)graph I is a finite (labeled) directed (multi)graph.
(Vertices are understood as variables.)

vertex: component (genes, proteins, chemical complexes,...), set of components
(similar function, identification {gene, RNA, protein},...), signal,...

edge: inhibiting/activating activity (TFs, enzymes,...), complex forming,
information flow,...

value: activity status, concentration, configuration,...

I translate behavioral rules into discrete function f : X → X

I for each component decide the impact of its predecessors in a given
state on its value→ choice of parameters

Consistency: I = G(f )
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Exploring the Structure

Consider interaction graph I = (V ,E)

Use graph theoretical characteristics and measures

I quantify organizational features of I

I importance of nodes

I reachability among nodes

I homogeneity/heterogeinity w.r.t. a given property

I relate to biological features

I robustness, sensitivity, control,...

I identify modules with characteristic function
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Degree distribution and clustering

I degree of a node: # of edges originating (outdegree) or ending
(indegree) in the node

I hubs: highest degree nodes

I degree distribution P(k): fraction of nodes with degree k
(indegree/outdegree distribution)
[cellular networks are often scale-free]

I neighborhood of a node v : set of nodes 6= v adjacent to v
(in/out-neighborhood)

I clique: completely connected subgraph

I clustering coefficient of a node: ratio of # of edges in neighborhood and
# of edges if neighborhood were a clique
[large average clustering coefficients indicate redundancy, cohesiveness;
observed in protein-protein interaction and metabolic networks]
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Paths and connectivity

I distance between two nodes: shortest path length connecting the nodes

I small world: average shortest path length of large networks stays small
[facilitates rapid spread of information in response to input; signal
transduction, protein interaction, metabolic networks]

I path redundancy [robustness]

I betweenness centrality of node v : ratio of # shortest paths from s to t
through v and total # of shortest st-paths
[importance of a node in flow from sources to sinks]

I connectivity of the network: existence of paths between every pair of
nodes (distinguish directed/undirected graphs)

I strongly connected directed graphs: all node pairs connected in
both directions

I strongly connected components: maximal subgraphs that are
strongly connected→ acyclic scc-graph with initial and terminal
components
[modularity of signaling networks]
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