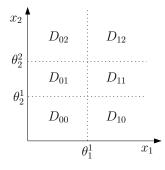
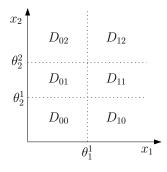
From PLDE to FDS



- regular domain D_s is identified with qualitative state
 s = (s₁,...,s_n), integer values describe position w.r.t. thresholds
- trajectories tend towards target value Φ(D)
- target value position in a regular domain can be described by corresponding state s^{Φ(D)}

From PLDE to FDS



- regular domain D_s is identified with qualitative state
 s = (s₁,...,s_n), integer values describe position w.r.t. thresholds
- trajectories tend towards target value Φ(D)
- target value position in a regular domain can be described by corresponding state s^{Φ(D)}

Describe the system dynamics by a function

 $f : \{s \mid D_s \text{ regular domain}\} \rightarrow \{s \mid D_s \text{ regular domain}\}, s \mapsto s^{\Phi(D)}$ Consider "trajectories" (s, f(s), f(f(s)), ...)

Discrete modeling

- system description by means of discrete functions
 - including structural information: network components and dependencies
 - capturing of interaction character and impact
 - \rightarrow predicting/analyzing dynamics

Hypothesis: kinetic details of interactions less important than network organization

Discrete modeling

- system description by means of discrete functions
 - including structural information: network components and dependencies
 - capturing of interaction character and impact
 - \rightarrow predicting/analyzing dynamics

Hypothesis: kinetic details of interactions less important than network organization

Ingredients

- system with *n* components α_i interpreted as variables in X_i := {0,..., p_i} with p_i ∈ N
- state space $X := X_1 \times \cdots \times X_n$
- n functions f_i : X → X_i capture rules to calculate future value of α_i from current value of its regulators
- ▶ system description: discrete function $f = (f_1, ..., f_n) : X \to X$

E.g. Boolean networks: $p_i = 1$ for all $i \in \{1, ..., n\}$

Dynamics

Consider $f: X \to X$, $X = \prod_{i=1}^{n} X_i$, $X_i = \{0, 1, \dots, p_i\}$, $p_i \in \mathbb{N}$, (FDS) and dynamics $(f^k(x))_{k \in \mathbb{N}}$, $x \in M$, with $f^1 = f$, $f^k = f \circ f^{k-1}$

Dynamics

Consider $f: X \to X$, $X = \prod_{i=1}^{n} X_i$, $X_i = \{0, 1, \dots, p_i\}$, $p_i \in \mathbb{N}$, (FDS) and dynamics $(f^k(x))_{k \in \mathbb{N}}$, $x \in M$, with $f^1 = f$, $f^k = f \circ f^{k-1}$

State transition graph S(f) of f

- vertex set X (state space, exponential in n)
- edge set $\{(x, f(x)) | x \in X\}$ synchronous update
- trajectories: infinite paths $(x, f(x), f^2(x), ...)$ in S(f)

Dynamics

Consider $f: X \to X$, $X = \prod_{i=1}^{n} X_i$, $X_i = \{0, 1, \dots, p_i\}$, $p_i \in \mathbb{N}$, (FDS) and dynamics $(f^k(x))_{k \in \mathbb{N}}$, $x \in M$, with $f^1 = f$, $f^k = f \circ f^{k-1}$

State transition graph S(f) of f

- vertex set X (state space, exponential in n)
- edge set $\{(x, f(x)) \mid x \in X\}$ synchronous update
- trajectories: infinite paths $(x, f(x), f^2(x), ...)$ in S(f)

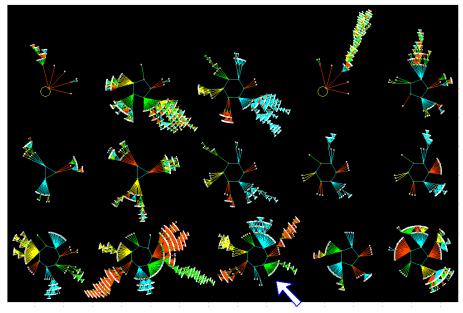
Note conceptual differences to ODE/PLDE description:

explicit description of trajectories, trajectories can merge

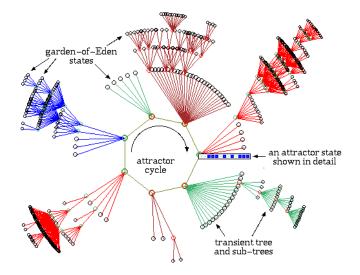
Consequences of synchronous update and finite state space

- each trajectory "ends" in a cycle
- \rightarrow attractor: terminal strongly connected components of S(f)

Finite dynamics (n=13)



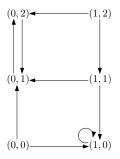
Finite dynamics (n=13)



Asynchronous update

State transition graph

- vertex set X
- edges $x \to x'$ iff x' = f(x) = x or $x'_i = x_i + \text{sgn}(f_i(x) - x_i)$ for some $i \in \{1, ..., n\}$ satisfying $x_i \neq f_i(x)$ and $x'_j = x_j$ for all $j \neq i$ (asynchronous update)



- gradual activity level evolution
- all time delays are distinct
- ightarrow more realistic for modeling e.g. biological systems
- \Rightarrow non-deterministic representation of possible behaviors
- attractors and trajectories may differ from the synchronous case

asynchronous dynamics is more complex and harder to analyze

Structure

Given
$$f: X \to X, X = \prod_{i=1}^{n} X_i, X_i = \{0, 1, \dots, p_i\}, p_i \in \mathbb{N}$$
 (FDS)

Interaction graph G(f)

- vertices represent network components
- directed edges capture interactions, may be labeled
 - signs carry information on interaction character
 - thresholds specify conditions on edge activity
 - \rightarrow labeled interaction graphs may be multigraphs (parallel edges)

Structure

Given
$$f: X \to X, X = \prod_{i=1}^{n} X_i, X_i = \{0, 1, \dots, p_i\}, p_i \in \mathbb{N}$$
 (FDS)

Interaction graph G(f)

- vertices represent network components
- directed edges capture interactions, may be labeled
 - signs carry information on interaction character
 - thresholds specify conditions on edge activity
 - ightarrow labeled interaction graphs may be multigraphs (parallel edges)

Deriving G(f) from f

- ► $\alpha_j \rightarrow \alpha_k$ iff f_k depends on the variable x_j , i.e., there exists $x \in X$ with $f_k(x) \neq f_k(\tilde{x})$ where $\tilde{x}_j \neq x_j$ and $\tilde{x}_l = x_l$ for all $l \neq j$
- signs and labels can also be derived mathematically from f

$$\Rightarrow$$
 G(f) represents functional network topology of f

Modeling

Modeling specific systems often starts with structural information:

 translate data on regulatory processes into directed, possibly labeled (multi)graphs

Definition An *interaction (multi-)graph I* is a finite (labeled) directed (multi)graph. (Vertices are understood as variables.)

- vertex: component (genes, proteins, chemical complexes,...), set of components (similar function, identification {gene, RNA, protein},...), signal,...
 - edge: inhibiting/activating activity (TFs, enzymes,...), complex forming, information flow,...
- value: activity status, concentration, configuration,...
- translate behavioral rules into discrete function $f: X \rightarrow X$
 - For each component decide the impact of its predecessors in a given state on its value → choice of parameters

Consistency:
$$I = G(f)$$

Exploring the Structure

Consider interaction graph I = (V, E)

Use graph theoretical characteristics and measures

- quantify organizational features of I
 - importance of nodes
 - reachability among nodes
 - homogeneity/heterogeinity w.r.t. a given property
- relate to biological features
 - robustness, sensitivity, control,...
 - identify modules with characteristic function

Degree distribution and clustering

- degree of a node: # of edges originating (outdegree) or ending (indegree) in the node
- hubs: highest degree nodes
- degree distribution P(k): fraction of nodes with degree k (indegree/outdegree distribution)
 [cellular networks are often scale-free]
- neighborhood of a node v: set of nodes \u2272 v adjacent to v (in/out-neighborhood)
- clique: completely connected subgraph
- clustering coefficient of a node: ratio of # of edges in neighborhood and # of edges if neighborhood were a clique
 [large average clustering coefficients indicate redundancy, cohesiveness; observed in protein-protein interaction and metabolic networks]

Paths and connectivity

- **distance** between two nodes: shortest path length connecting the nodes
- small world: average shortest path length of large networks stays small [facilitates rapid spread of information in response to input; signal transduction, protein interaction, metabolic networks]
- path redundancy [robustness]
- betweenness centrality of node v: ratio of # shortest paths from s to t through v and total # of shortest st-paths [importance of a node in flow from sources to sinks]
- connectivity of the network: existence of paths between every pair of nodes (distinguish directed/undirected graphs)
 - strongly connected directed graphs: all node pairs connected in both directions
 - ► strongly connected components: maximal subgraphs that are strongly connected → acyclic scc-graph with initial and terminal components [modularity of signaling networks]