
Aspects of analysis

Focus on size of attractors and basins of attraction, number of attractors, stability

Impact of K (averaged)

K = N: . network is complete graph, successor states chosen at random

. attractors can be very large (exponential in N), number of attractors
of order N, maximal sensitivity to intial conditions (chaotic)

K = 1: . structure decomposes into simpe cycles with tails, behavior
determined by constant functions and cycles (product of subsystems)

. attractor number exponential in N, attractor size of order N,
limited effect of perturbations (ordered)

K = 2: . variability in structure, canalyzing functions

. attractor number and size increases superpolynomial with N,
good stability properties (critical)

Understanding RBNs yields insights into more complex real world networks
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Reasons for order

Frozen core: set of "dynamically inactive" elements dividing
the system into functionally isolated modules

I fixed value for large part of the dynamical behavior

I decision taking subnetworks

I combinatorial dynamics (attractors)

I modularity allows for short cycle lengths (K = 1)
I "walls of constancy" absorb perturbations (K = 1), restrict

attractors reachable by mutations/noise
I moderate number of attractors w.r.t. N due to big number of

frozen elements

Observation: large connected frozen structure percolates
spontaneously if K = 2
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Canalyzing functions

Definition f : {0,1}n → {0,1} is called canalyzing (in i), if there is i ∈
{1, . . . ,n} and c,c′ ∈ {0,1} such that f (x) = c′ for all x ∈ {0,1}n with
xi = c.
The input value c is called canalyzing value, and the output c′ is called
canalyzed value.

I elements regulated by canalyzing functions are insensitive to other
regulator inputs in the presence of canalyzing value

I forcing structures can percolate through the network if canalyzing
functions of several elements interlock:
A→ B with A, B regulated by canalyzing functions, and canalyzed
value of A is canalyzing value of B (forcing connection)

I concepts of frozen core and canalyzing functions can be
generalized for multi-valued functions.

I many biological functions are canalyzing
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Structural modularity

Consider interaction graph G(f ) = (V ,E) representing the network structure

I find modules based on graph theoretical criteria, shared expression
pattern ...

B include statistical significance [ U. Alon et al., Science, 2002 ]

I recurring patterns of interconnections with significantly higher
occurrence than in random networks (motifs)

I sets of motifs of distinct networks may differ considerably
I similar motifs in networks with similar function
⇒ homologies, classification, comparison
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Significance of motifs

I evaluating structural significance

I pairwise disconnectivity index: importance of subgraph M for sustaining
network connectivity [ B. Goemann et al., 2009 ]:

compare number of connected ordered pairs in G with
number in G \M
check all (sets of) subgraphs of given size (motifs, anti-motifs)

? no correlation between abundance of pattern and
topological significance

? topological role of substructures mainly determined
by location/embedding

I evaluating functional significance

I analyzing behavior of isolated motifs

? biological meaningful behavior (differentiation, oscillation, pulse,
coordinated expression,...)

? not necessarily retrievable in complex system

Heike Siebert, FU Berlin, Molecular Networks WS 10/11 3- 5



Compositional dynamics
Consider disjoint modules

G1, . . . ,Gk interaction graphs associated with discrete functions f 1, . . . , f k

and state space X i , G :=
Sk

i=1 Gk , f derived from f 1, . . . , f k

I all attractors of (G, f ) can be derived from products of attractors of
(Gi , f i), i ∈ {1, . . . ,k}

I asynchronous update

I # attractors of (G, f ) is the product of # attractors of (Gi , f i)
I cardinality of compositional attractor A is the product of the

cardinalities of the component attractors

I synchronous update

I # attractors of (G, f ) depends on # of attractors of (Gi , f i) as
well as least common multiple and greatest common divisor of
the component attractor lengths

I maximal length of a compositional attractor is the maximum of
the least common multiple of attractor lengths of component
attractors
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Non-isolated modules

Interacting modules

consider network (G, f ) with associated state space X = X1×·· ·×Xn

I module attractors generally not preserved

I dynamics of the isolated module is not necessarily imprinted on
network dynamics

Recover isolation

I find partial fixed points, i. e. find I ⊂ {1, . . . ,n} and xi ∈ Xi s. t.
fi(y) = xi for i ∈ I ⊂ {1, . . . ,n} and all y ∈ X with yi = xi for all i ∈ I
(frozen core)

I consider part of state space X [I,xi ] := {y ∈ X | ∀i ∈ I : yi = xi}
I consider graph components Z 1, . . . ,Z k of the subgraph of G derived

from the vertices j /∈ I, and associated functions f j derived by
projection of f |X [I,xi ]

⇒ all attractors in X [I,xi ] can be derived from attractors of (Zj , f j)
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Network analysis using modules – Th cell differentiation
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[ L. Mendoza, Biosystems 84(2), 2006 ]

I easy calculation of partial fixed points for networks with input layer
I fix input values
I constraint percolation through

network via iteration Complexity reduction

input (0,0,0)

I state space sizes:
82944 / 2592

input (1,0,0)

I state space sizes:
82944 / 4

I additional information,
e. g. extent of crosstalk, linking
structural and dynamical aspects
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Transfer of characteristics

I isolated modules may imprint qualitative characteristics on the network

I isolation in parts of state space may be sufficient

I example: positive and negative circuits

I isolated circuits show distinct behavior:
? positive circuits induce multiple attractors
? negative circuits induce cyclic attractors (cardinality >1)

note differences for synchronous and asynchronous update

I check characteristics for complex networks containing circuits
⇒ characteristics are conserved for circuits in "conditional"

isolation (compositional properties)

Exploiting modularity

I reduce network complexity

I understand design principles
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