Aspects of analysis

Focus on size of attractors and basins of attraction, number of attractors, stability **Impact of** K (averaged)

- K = N: \triangleright network is complete graph, successor states chosen at random
 - ▷ attractors can be very large (exponential in *N*), number of attractors of order *N*, maximal sensitivity to intial conditions (chaotic)
- K = 1: > structure decomposes into simple cycles with tails, behavior determined by constant functions and cycles (product of subsystems)
 - ▷ attractor number exponential in *N*, attractor size of order *N*, limited effect of perturbations (ordered)
- K = 2: \triangleright variability in structure, canalyzing functions
 - ▷ attractor number and size increases superpolynomial with *N*, good stability properties (critical)

Understanding RBNs yields insights into more complex real world networks

Reasons for order

Frozen core: set of "dynamically inactive" elements dividing the system into functionally isolated modules

- fixed value for large part of the dynamical behavior
- decision taking subnetworks
- combinatorial dynamics (attractors)
 - modularity allows for short cycle lengths (K = 1)
 - ► "walls of constancy" absorb perturbations (K = 1), restrict attractors reachable by mutations/noise
 - moderate number of attractors w.r.t. N due to big number of frozen elements

Observation: large connected frozen structure percolates spontaneously if K = 2

Canalyzing functions

Definition $f : \{0,1\}^n \to \{0,1\}$ is called *canalyzing (in i)*, if there is $i \in \{1,...,n\}$ and $c,c' \in \{0,1\}$ such that f(x) = c' for all $x \in \{0,1\}^n$ with $x_i = c$.

The input value c is called *canalyzing value*, and the output c' is called *canalyzed value*.

- elements regulated by canalyzing functions are insensitive to other regulator inputs in the presence of canalyzing value
- forcing structures can percolate through the network if canalyzing functions of several elements interlock:

 $A \rightarrow B$ with A, B regulated by canalyzing functions, and canalyzed value of A is canalyzing value of B (forcing connection)

- concepts of frozen core and canalyzing functions can be generalized for multi-valued functions.
- many biological functions are canalyzing

Structural modularity

Consider interaction graph G(f) = (V, E) representing the network structure

- find modules based on graph theoretical criteria, shared expression pattern ...
- ▷ include statistical significance [U. Alon et al., Science, 2002]
 - recurring patterns of interconnections with significantly higher occurrence than in random networks (motifs)
 - sets of motifs of distinct networks may differ considerably
 - ► similar motifs in networks with similar function ⇒ homologies, classification, comparison

Significance of motifs

- evaluating structural significance
 - pairwise disconnectivity index: importance of subgraph *M* for sustaining network connectivity [B. Goemann et al., 2009]:

compare number of connected ordered pairs in G with number in $G \setminus M$

check all (sets of) subgraphs of given size (motifs, anti-motifs)

- no correlation between abundance of pattern and topological significance
- topological role of substructures mainly determined by location/embedding
- evaluating functional significance
 - analyzing behavior of isolated motifs
 - biological meaningful behavior (differentiation, oscillation, pulse, coordinated expression,...)
 - * not necessarily retrievable in complex system

Compositional dynamics

Consider disjoint modules

 G^1, \ldots, G^k interaction graphs associated with discrete functions f^1, \ldots, f^k and state space X^i , $G := \bigcup_{i=1}^k G^k$, *f* derived from f^1, \ldots, f^k

- ► all attractors of (G, f) can be derived from products of attractors of (Gⁱ, fⁱ), i ∈ {1,...,k}
- asynchronous update
 - # attractors of (G, f) is the product of # attractors of (G^{i}, f^{i})
 - cardinality of compositional attractor A is the product of the cardinalities of the component attractors
- synchronous update
 - # attractors of (G, f) depends on # of attractors of (Gⁱ, fⁱ) as well as least common multiple and greatest common divisor of the component attractor lengths
 - maximal length of a compositional attractor is the maximum of the least common multiple of attractor lengths of component attractors

Non-isolated modules

Interacting modules

consider network (*G*, *f*) with associated state space $X = X_1 \times \cdots \times X_n$

- module attractors generally not preserved
- dynamics of the isolated module is not necessarily imprinted on network dynamics

Recover isolation

- ▶ find partial fixed points, i. e. find $I \subset \{1, ..., n\}$ and $x_i \in X_i$ s. t. $f_i(y) = x_i$ for $i \in I \subset \{1, ..., n\}$ and all $y \in X$ with $y_i = x_i$ for all $i \in I$ (frozen core)
- consider part of state space $X[I, x_i] := \{y \in X \mid \forall i \in I : y_i = x_i\}$
- Consider graph components Z¹,..., Z^k of the subgraph of G derived from the vertices *j* ∉ *I*, and associated functions f^j derived by projection of f|_{X[I,x_i]}
- \Rightarrow all attractors in $X[I, x_i]$ can be derived from attractors of (Z_j, f^j)

- easy calculation of partial fixed points for networks with input layer
 - fix input values
 - constraint percolation through

Complexity reduction

input (0,0,0)

 state space sizes: 82944/2592

- easy calculation of partial fixed points for networks with input layer
 - fix input values
 - constraint percolation through

Complexity reduction

input (0,0,0)

 state space sizes: 82944/2592

- easy calculation of partial fixed points for networks with input layer
 - fix input values
 - constraint percolation through

Complexity reduction

input (0,0,0)

state space sizes:
 82944 / 2592

- easy calculation of partial fixed points for networks with input layer
 - fix input values
 - constraint percolation through network via iteration

Complexity reduction

input (0,0,0)

 state space sizes: 82944/2592

- > easy calculation of partial fixed points for networks with input layer
 - fix input values
 - constraint percolation through network via iteration

[L. Mendoza, Biosystems 84(2), 2006]

Complexity reduction

input (0,0,0)

state space sizes:
 82944/2592

input (1,0,0)

- state space sizes: 82944/4
- additional information,
 e.g. extent of crosstalk, linking structural and dynamical aspects

Transfer of characteristics

- isolated modules may imprint qualitative characteristics on the network
- isolation in parts of state space may be sufficient
- example: positive and negative circuits
 - isolated circuits show distinct behavior:
 * positive circuits induce multiple attractors
 * negative circuits induce cyclic attractors (cardinality >1)
 note differences for synchronous and asynchronous update
 - check characteristics for complex networks containing circuits
 characteristics are conserved for circuits in "conditional" isolation (compositional properties)

Exploiting modularity

- reduce network complexity
- understand design principles