
Petri nets

I proposed by Carl Adam Petri in the 60s

I simple graphical and mathematical formalism for modeling and
analyzing distributed systems

I originally for qualitative models, but many extensions exist

I variety of applications, in particular molecular networks

Definition A Petri Net is a quadruple N = (P,T ,g,m0), where
P and T are finite, non-empty, disjoint sets,
and g : (P×T )∪ (T ×P)→ N0 and m0 : P→ N0 are functions.
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Structure and state space

Structure
I N can be visualized as a bipartite graph, with vertex set P ∪T

and weighted directed arcs derived from g (network structure)
I vertices in P are called places, vertices in T transitions

State space
I places are marked with tokens, number of tokens in a place

constitutes its component value
I a marking m : P→ N0 assigns each place a token count (states),

can be written as vector of length |P|
I m0 gives an initial marking (initial state)
I a priori: state space N|P|0 , but initial marking generally restricts the

state space (e.g. boundedness)

Informally, places represent resources of the system, while transitions
correspond to events influencing the resources
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Dynamics

Firing given a marking m ∈ N|P|0
I a transition t is enabled if m(p)≥ g((p, t)) for all places p with

g((p, t)) 6= 0 (input places of t)
I enabled transitions may fire resulting in a new marking obtained by

consuming tokens from input places and producing tokens according to arc
weights in places p with g((t,p)) 6= 0 (output places of t)

Algebraic description
I arc weights expressed in pre- and postcondition matrix:

Pre,Post ∈ N|P|×|T |0 , where Prept := g((p, t)) and Postpt := g((t,p)) for all
p ∈ P, t ∈ T

I incidence matrix C := Post−Pre describes token balance of firings
I state equation m′ = m +Cσ, where entries of σ ∈ N|T |0 represent number

of transition occurrences:
m′ represents the marking resulting from firing a single transition t once, if
σ is the t-th unit vector
Remark: in general σ represents multiple transition firings, solvability of the
state equation is limited (non-negativity of markings, non-determinism) and
yields no information on sequence of events
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Marking graph

Given a marking m ∈ N|P|0
I any enabled transition t may fire: state transition from m to m′ := m +Cσ

with σ the t-th unit vector
I firing is non-deterministic
I marking graph R (m0) of N : vertices are markings m such that there

exists a sequence of state transitions leading from initial marking m0 to m,
edges represent state transitions (state transition graph)

Properties
I Boundedness: number of tokens in each place is bounded (regardless of

initial marking), N is k -bounded if no marking in R (m0) has more than k
tokens in a place,
boundedness results in finite marking graphs

I Reachability: marking m is reachable from m0 if there is a path from m0 to
m in R (m0) (that is if m belongs to the vertex set of R (m0))

I Liveness: every transition is in some state of the marking graph enabled

Remark: analysis using temporal logic and model checking techniques
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Invariants

P-invariants
I solutions x ∈ N|P|0 of CT x = 0
I support of x : non-zero components of x
I satisfy mT x = mT

0 x for all markings m in R (m0), i.e.,
represent sets of places (support of x) with constant weighted sum for all
markings in R (m0) (conservation relations)

T-invariants
I solutions y ∈ N|T |0 of Cy = 0, i.e.,

firing sequences that reproduce a marking m
I correspondence to elementary modes in metabolic networks

Biological modeling
I models of metabolic, regulatory and signal transduction networks
I very different interpretation of places, transitions, tokens ...
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Metabolic networks

Modeling

I places represent reactants, products, enzymes

I transitions represent biochemical reactions

I arc weights correspond to stoichiometric coefficients

→ topology of metabolic network and petri net model match

I markings represent distribution of species molecules in the network

Analysis
I dynamic model (other than flux cone analysis)

I simulation
I reachability, liveness etc. (model checking techniques)

I stoichiometric matrix of the metabolic network corresponds to incidence
matrix of the petri net, T-invariants correspond to elementary modes
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Regulatory networks

Modeling Given a Boolean network f : {0,1}n→{0,1}n

I places represent components

I transitions represent interactions

I tokens represent activity levels (on/off), markings represent states

but translation is not straight forward

I for each component αi introduce complementary places αi (component
active) and αi (component inactive), state in {0,1}n corresponds to
marking restricted to places αi

→ guarantee sum of tokens in αi and αi is 1

I for each αi let Pred(αi) denote the predecessors of αi in G(f ),
i.e. fi only depends on components in Pred(αi),
represent all states defining fi by the states xR , where R ⊆ Pred(αi) and
xR

j = 1 for all j ∈ R, xR
j = 0 for all j ∈ {1, . . . ,n}\R

I for each i ∈ {1, . . . ,n} introduce transitions ti,xR = ti,R representing update
of αi to fi(x) in a state x coinciding with xR in components of Pred(αi)
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Mathematical description

Petri net model Given a Boolean network f : {0,1}n→{0,1}n

I set of places P := {α1,α1, . . . ,αn,αn}
I set of transitions T := {ti,R | i ∈ {1, . . . ,n}, R ⊆ Pred(αi)}
I define g : (P×T )∪ (T ×P)→{0,1} as follows

In case αi /∈ Pred(αi),

with xR ∈ {0,1}n, xR
j = 1 for j ∈ R, xR

j = 0 for j ∈ {1, . . . ,n}\R

I g(αi , ti,R) = g(ti,R ,αi) = 1− fi(xR) and g(αi , ti,R) = g(ti,R ,αi) = fi(xR)

→ responsible for activity level change of component αi , ensures token
sum of αi and αi remains 1

I g(αj , ti,R) = g(ti,R ,αj) = 1 for all αj ∈ R

g(αj , ti,R) = g(ti,R ,αj) = 1 for all αj ∈ Pred(αi)\R

→ enabling of ti,R , if current marking corresponds to xR , conservation of
component markings

I in all other cases g is set to zero
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Mathematical description

In case αi ∈ Pred(αi),

with xR ∈ {0,1}n, xR
j = 1 for j ∈ R, xR

j = 0 for j ∈ {1, . . . ,n}\R

If αi ∈ R
I g(αi , ti,R) = g(ti,R ,αi) = 1− fi(xR),

αi ∈ R implies αi carries a token, moving it to αi is only necessary if fi(xR) = 0

I g(αj , ti,R) = g(ti,R ,αj) = 1 for all αj ∈ R \{αi}
g(αj , ti,R) = g(ti,R ,αj) = 1 for all αj ∈ Pred(αi)\R

→ corresponds to case αi /∈ R

If αi /∈ R
I g(αi , ti,R) = g(ti,R ,αi) = fi(xR),

αi /∈ R implies αi carries a token, moving it to αi is only necessary if fi(xR) = 1

I g(αj , ti,R) = g(ti,R ,αj) = 1 for all αj ∈ R

g(αj , ti,R) = g(ti,R ,αj) = 1 for all αj ∈ Pred(αi)\ (R∪{αi})
→ corresponds to case αi /∈ R

I in all other cases g is set to zero
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Remarks

I mathematical description yields automated procedure for translating
network description by Boolean function into petri nets

I similar translation for multi-valued models possible

I petri net topology carries information on structure and dynamics

I counting transitions, petri net model is exponential in size
(simplifications possible)

I non-determinism of petri net dynamics results in asynchronous
update for the regulatory network,
it is possible to construct petri net models yielding synchronous
dynamics

I simulation, algebraic methods and model checking techniques can
be used for analysis

I treatment of signalling networks similar
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