Petri nets

- proposed by Carl Adam Petri in the 60s
- simple graphical and mathematical formalism for modeling and analyzing distributed systems
- originally for qualitative models, but many extensions exist
- variety of applications, in particular molecular networks

Definition A Petri Net is a quadruple $\mathcal{N} = (P, T, g, m_0)$, where *P* and *T* are finite, non-empty, disjoint sets, and $g : (P \times T) \cup (T \times P) \rightarrow \mathbb{N}_0$ and $m_0 : P \rightarrow \mathbb{N}_0$ are functions.

Structure and state space

Structure

- N can be visualized as a bipartite graph, with vertex set P ∪ T and weighted directed arcs derived from g (network structure)
- vertices in P are called places, vertices in T transitions

State space

- places are marked with *tokens*, number of tokens in a place constitutes its component value
- a marking m : P → N₀ assigns each place a token count (states), can be written as vector of length |P|
- m_0 gives an initial marking (initial state)
- ► a priori: state space N₀^{|P|}, but initial marking generally restricts the state space (e.g. boundedness)

Informally, places represent resources of the system, while transitions correspond to events influencing the resources

Dynamics

Firing given a marking $m \in \mathbb{N}_0^{|P|}$

- a transition *t* is *enabled* if $m(p) \ge g((p, t))$ for all places *p* with $g((p, t)) \ne 0$ (input places of *t*)
- enabled transitions may *fire* resulting in a new marking obtained by consuming tokens from input places and producing tokens according to arc weights in places *p* with g((t, p)) ≠ 0 (output places of t)

Algebraic description

- arc weights expressed in *pre- and postcondition matrix*: $Pre, Post \in \mathbb{N}_{0}^{|P| \times |T|}$, where $Pre_{pt} := g((p, t))$ and $Post_{pt} := g((t, p))$ for all $p \in P, t \in T$
- ► *incidence matrix C* := *Post* − *Pre* describes token balance of firings
- ► state equation $m' = m + C\sigma$, where entries of $\sigma \in \mathbb{N}_0^{|T|}$ represent number of transition occurrences:

m' represents the marking resulting from firing a single transition t once, if σ is the t-th unit vector

Remark: in general σ represents multiple transition firings, solvability of the state equation is limited (non-negativity of markings, non-determinism) and yields no information on sequence of events

Marking graph

Given a marking $m \in \mathbb{N}_0^{|P|}$

- any enabled transition *t* may fire: state transition from *m* to $m' := m + C\sigma$ with σ the *t*-th unit vector
- firing is non-deterministic
- marking graph $\mathcal{R}(m_0)$ of \mathcal{N} : vertices are markings *m* such that there exists a sequence of state transitions leading from initial marking m_0 to *m*, edges represent state transitions (state transition graph)

Properties

▶ Boundedness: number of tokens in each place is bounded (regardless of initial marking), 𝒩 is k-bounded if no marking in 𝔅(m₀) has more than k tokens in a place,

boundedness results in finite marking graphs

- ► Reachability: marking m is reachable from m₀ if there is a path from m₀ to m in R(m₀) (that is if m belongs to the vertex set of R(m₀))
- Liveness: every transition is in some state of the marking graph enabled
 Remark: analysis using temporal logic and model checking techniques

Invariants

P-invariants

- solutions $x \in \mathbb{N}_0^{|P|}$ of $C^T x = 0$
- support of x: non-zero components of x
- satisfy m^Tx = m₀^Tx for all markings m in 𝔅(m₀), i.e., represent sets of places (support of x) with constant weighted sum for all markings in 𝔅(m₀) (conservation relations)

T-invariants

- ► solutions $y \in \mathbb{N}_0^{|T|}$ of Cy = 0, i.e., firing sequences that reproduce a marking *m*
- correspondence to elementary modes in metabolic networks

Biological modeling

- models of metabolic, regulatory and signal transduction networks
- very different interpretation of places, transitions, tokens ...

Metabolic networks

Modeling

- places represent reactants, products, enzymes
- transitions represent biochemical reactions
- arc weights correspond to stoichiometric coefficients

 \rightarrow topology of metabolic network and petri net model match

markings represent distribution of species molecules in the network

Analysis

- dynamic model (other than flux cone analysis)
 - simulation
 - reachability, liveness etc. (model checking techniques)
- stoichiometric matrix of the metabolic network corresponds to incidence matrix of the petri net, T-invariants correspond to elementary modes

Regulatory networks

Modeling Given a Boolean network $f : \{0,1\}^n \rightarrow \{0,1\}^n$

- places represent components
- transitions represent interactions
- tokens represent activity levels (on/off), markings represent states
 but translation is not straight forward
 - for each component α_i introduce complementary places α_i (component active) and α_i (component inactive), state in {0,1}ⁿ corresponds to marking restricted to places α_i

 \rightarrow guarantee sum of tokens in α_i and $\overline{\alpha_i}$ is 1

- ► for each α_i let $Pred(\alpha_i)$ denote the predecessors of α_i in G(f), i.e. f_i only depends on components in $Pred(\alpha_i)$, represent all states defining f_i by the states x^R , where $R \subseteq Pred(\alpha_i)$ and $x_j^R = 1$ for all $j \in R$, $x_j^R = 0$ for all $j \in \{1, ..., n\} \setminus R$
- For each *i* ∈ {1,...,*n*} introduce transitions *t_{i,x^R}* = *t_{i,R}* representing update of α_i to *f_i(x)* in a state *x* coinciding with *x^R* in components of *Pred*(α_i)

Mathematical description

Petri net model Given a Boolean network $f : \{0,1\}^n \rightarrow \{0,1\}^n$

- set of places $P := \{\alpha_1, \overline{\alpha_1}, \dots, \alpha_n, \overline{\alpha_n}\}$
- ► set of transitions $T := \{t_{i,R} \mid i \in \{1,...,n\}, R \subseteq Pred(\alpha_i)\}$
- define $g: (P \times T) \cup (T \times P) \rightarrow \{0,1\}$ as follows

In case $\alpha_i \notin Pred(\alpha_i)$, with $x^R \in \{0,1\}^n$, $x_j^R = 1$ for $j \in R$, $x_j^R = 0$ for $j \in \{1, \dots, n\} \setminus R$

g(α_i, t_{i,R}) = g(t_{i,R}, α_i) = 1 − f_i(x^R) and g(α_i, t_{i,R}) = g(t_{i,R}, α_i) = f_i(x^R)
 → responsible for activity level change of component α_i, ensures token sum of α_i and α_i remains 1

 g(α_j, t_{i,R}) = g(t_{i,R}, α_j) = 1 for all α_j ∈ R g(α_j, t_{i,R}) = g(t_{i,R}, α_j) = 1 for all α_j ∈ Pred(α_i) \ R → enabling of t_{i,R}, if current marking corresponds to x^R, conservation of component markings

in all other cases g is set to zero

Mathematical description

In case $\alpha_i \in Pred(\alpha_i)$, with $x^R \in \{0,1\}^n$, $x_j^R = 1$ for $j \in R$, $x_j^R = 0$ for $j \in \{1, \dots, n\} \setminus R$

If $\alpha_i \in R$

•
$$g(\alpha_i, t_{i,R}) = g(t_{i,R}, \overline{\alpha_i}) = 1 - f_i(x^R),$$

 $\alpha_i \in R$ implies α_i carries a token, moving it to $\overline{\alpha_i}$ is only necessary if $f_i(x^R) = 0$

►
$$g(\alpha_j, t_{i,R}) = g(t_{i,R}, \alpha_j) = 1$$
 for all $\alpha_j \in R \setminus \{\alpha_i\}$
 $g(\overline{\alpha_j}, t_{i,R}) = g(t_{i,R}, \overline{\alpha_j}) = 1$ for all $\alpha_j \in Pred(\alpha_i) \setminus R$
 \rightarrow corresponds to case $\alpha_i \notin R$

If $\alpha_i \notin R$

►
$$g(\overline{\alpha_i}, t_{i,R}) = g(t_{i,R}, \alpha_i) = f_i(x^R),$$

 $\alpha_i \notin R$ implies $\overline{\alpha_i}$ carries a token, moving it to α_i is only necessary if $f_i(x^R) = 1$

►
$$g(\alpha_j, t_{i,R}) = g(t_{i,R}, \alpha_j) = 1$$
 for all $\alpha_j \in R$
 $g(\overline{\alpha_j}, t_{i,R}) = g(t_{i,R}, \overline{\alpha_j}) = 1$ for all $\alpha_j \in Pred(\alpha_i) \setminus (R \cup \{\alpha_i\})$
 \rightarrow corresponds to case $\alpha_i \notin R$

in all other cases g is set to zero

Remarks

- mathematical description yields automated procedure for translating network description by Boolean function into petri nets
- similar translation for multi-valued models possible
- petri net topology carries information on structure and dynamics
- counting transitions, petri net model is exponential in size (simplifications possible)
- non-determinism of petri net dynamics results in asynchronous update for the regulatory network, it is possible to construct petri net models yielding synchronous dynamics
- simulation, algebraic methods and model checking techniques can be used for analysis
- treatment of signalling networks similar