Dynamics

- only consider *valid* markings *m* where $m(\alpha_i) = 1 m(\tilde{\alpha}_i)$ for all $i \in \{1, ..., n\}$
 - validity is conserved: marking graph of valid initial state consists only of valid states
 - boundedness
- marking graph and corresponding subgraphs of asynchronous state transition graph of *f* are equivalent in the following sense:

Remarks

- mathematical description yields automated procedure for translating network description by Boolean function into petri nets
- similar translation for multi-valued models possible
- petri net topology carries information on structure and dynamics
- counting transitions, petri net model is exponential in size (simplifications possible)
- non-determinism of petri net dynamics results in asynchronous update for the regulatory network, it is possible to construct petri net models yielding synchronous dynamics
- simulation, algebraic methods and model checking techniques can be used for analysis
- treatment of signalling networks similar

Combining metabolic and regulatory networks

- diversity of biological processes complicates formulation of encompassing mathematical modeling framework
 - E. Simão et al., *Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. Coli*, Bioinformatics 21, 2005
 - integrated qualitative modeling framework petri net model combining metabolic and gene regulatory networks

Biosynthesis of tryptophan

- metabolic pathway converting chorismate into tryptophan (Trp)
- pathway enzyme (TrpE) inhibition by final product (Trp)
- transcriptional inhibition of pathway enzyme coding operon resulting from combination of product of repressor gene *trpR* and Trp
- importance of availability of external Trp
- \rightarrow simplified model

Tryptophan biosynthesis

Fig. 1. Tryptophan biosynthesis is subjected to at least three regulatory mechanisms: (a) transcription attenuation, (b) transcriptional repression and (c) feedback enzyme inhibition [cf. (Yanofsky, 2004)].

Metabolic pathway

- reactions represented as transitions with reactants as input and products as output places
- enzyme catalysis: side conditions with no consumption
- stoichiometry encoded in arc weights
- simple metabolic chain conditioned by presence of enzymes and reactants

Regulatory network

Translate sim	plified logical mod	\widetilde{Trp}_{ext}	$\bigcirc Trp_{ext}$	
net model	TrpR 2 TrpR 1 1 1 1 1 1 1 1 1 1 1 1 1	$\widehat{T_{rp}}$	t_3 t_3 t_1 t_2 t_3 t_1 t_2 t_2 t_3 t_4 t_5	2 t_2 t_4 Trp
Context (input genes)	Parameter value	Corresponding PN transitions		
TrpE TrpR = 0 and Trp = 0 TrpR = 1 and Trp = 0 $TrpR = 0 \text{ and } Trp \ge 1$ $TrpR = 1 \text{ and } Trp \ge 1$	0 1 0 0 1 0 1 0	15 16, 17	TrpR	TrpR
TrpR $Trp \leq 1$ Trp = 2 Trp	0 1	18 19	 input vertex Trp_{ext} 	
$Trp_{ext} = 0 \text{ and } TrpE$ $Trp_{ext} = 0 \text{ and } TrpE$ $Trp_{ext} = 1 \text{ and } TrpE$ $Trp_{ext} = 1 \text{ and } TrpE$ $Trp_{ext} = 2 \text{ and } TrpE$ $Trp_{ext} = 2 \text{ and } TrpE$	= 0 0 = 1 1 = 0 1 = 1 1 = 0 2 = 1 2	t1 t2, t3 t4	range {0,1,2} for Trp {0,1} for TrpR and Tr) and Trp _{ext} , rpE

Heike Siebert, FU Berlin, Molecular Networks WS 10/11

Integrated model I

- copy metabolic pathway
- copy regulatory network (but changes in its topology will be made)
- add places p
 for all places communicating with regulatory network (enzymes, Trp)
- model regulation of enzymes by regulatory components (here only inhibition) according to templates for regulatory interactions
 - merge identical places in metabolic and regulatory petri net

 identify indirect (via metabolic pathway) regulatory interactions and substitute them by explicit pathway (here influence of TrpE on Trp)

Arc weights have been omitted.

Integrated model II

Further adjustments

- add Trp as input place tp r6 (coherence of markings)
- add output arcs from r6 to all input compounds of the pathway (no restriction on resources)
- put priorities on transitions (delays)

Reachability analysis for three different levels of Trp_{ext} and biologically sensible initial marking

- Iow level: homeostatic levels of internal Trp and TrpE activity (cycle)
- intermediate level: steady state with Trp present, TrpE and TrpR inactive, all other enzymes present (unique dead marking)
- high level: Trp high, TrpR active, enzymes repressed (six dead markings, differ only in metabolic intermediates)
- \Rightarrow matches biological observations

Remarks

Integrated petri net models

- no automated procedure for combining models
- difficulty of "translating" tokens in more complex settings (at the interface of metabolic/regulatory/signalling networks)
- problem of handling significantly different time scales
- complexity of dynamical models unsuited for large networks

Petri nets in general

- easily accessible, flexible modeling framework allowing for efficient analysis (simulation, algebraic methods, model checking)
- well-founded mathematical theory
- availability of tools
- several extensions (colored, timed, stochastic, hybrid petri nets)

Qualitative modeling

- rigorous modeling and formal analysis in spite of limited information (lacking quantitative data, knowledge on kinetic mechanisms and components,...)
- efficient comprehensive analysis focusing on core properties (high level of abstraction)
- groundwork of and complement to quantitative models

Topics possibly mentioned in passing but deserving much more attention: discretization of differential equation systems, deriving continuous from discrete models, hybrid modeling, reduction techniques, reverse engineering, ...