Flux Coupling Analysis, Part II

A. Bockmayr (joint work with A. Larhlimi, CompLife'06)

FB Mathematik und Informatik, Freie Universität Berlin

Molekulare Netzwerke, WS 2010

• Flux Coupling Finder (FCF) [Burgard et al. 2004]:

- Based on linear fractional optimization
- Shortcomings:
 - FCF needs bounds on the fluxes through exchange reactions.
 - * FCF requires a reconfiguration of the metabolic network
 - A post-processing step is needed to deduce reaction couplings.
 - ★ A large number of linear optimization problems has to be solved.

• Flux Coupling Finder (FCF) [Burgard et al. 2004]:

- Based on linear fractional optimization
- Shortcomings:
 - * FCF needs bounds on the fluxes through exchange reactions.
 - * FCF requires a reconfiguration of the metabolic network
 - ★ A post-processing step is needed to deduce reaction couplings.
 - $\star\,$ A large number of linear optimization problems has to be solved.

• Flux Coupling Finder (FCF) [Burgard et al. 2004]:

- Based on linear fractional optimization
- Shortcomings:
 - ★ FCF needs bounds on the fluxes through exchange reactions.
 - * FCF requires a reconfiguration of the metabolic network.
 - A post-processing step is needed to deduce reaction couplings.
 - * A large number of linear optimization problems has to be solved.

• Flux Coupling Finder (FCF) [Burgard et al. 2004]:

- Based on linear fractional optimization
- Shortcomings:
 - ★ FCF needs bounds on the fluxes through exchange reactions.
 - * FCF requires a reconfiguration of the metabolic network.
 - * A post-processing step is needed to deduce reaction couplings.
 - * A large number of linear optimization problems has to be solved.

• Flux Coupling Finder (FCF) [Burgard et al. 2004]:

- Based on linear fractional optimization
- Shortcomings:
 - ★ FCF needs bounds on the fluxes through exchange reactions.
 - * FCF requires a reconfiguration of the metabolic network.
 - * A post-processing step is needed to deduce reaction couplings.
 - \star A large number of linear optimization problems has to be solved.

• Flux Coupling Finder (FCF) [Burgard et al. 2004]:

- Based on linear fractional optimization
- Shortcomings:
 - * FCF needs bounds on the fluxes through exchange reactions.
 - * FCF requires a reconfiguration of the metabolic network.
 - * A post-processing step is needed to deduce reaction couplings.
 - \star A large number of linear optimization problems has to be solved.

Reaction classification

• The steady state flux cone

$$C = \{ v \in \mathbb{R}^{m \times n} \mid Sv = 0, v_i \ge 0 \text{ for all } i \in Irr \}$$

• Lineality space

 $\text{lin.space}(C) = \{ v \in \mathbb{R}^{m \times n} \mid Sv = 0, v_i = 0 \text{ for all } i \in Irr \}$

Classification of reversible reactions

A reversible reaction $j \in Rev$ is called **pseudo-irreversible** if $v_j = 0$ for all $v \in lin.space(C)$.

A reversible reaction that is not pseudo-irreversible is called **fully** reversible.

Decomposition of the reaction set

- $Frev = \{i \mid i \text{ is fully reversible}\}.$
- Prev = { $i \mid i \text{ is pseudo-irreversible and there exist } v^+, v^- \in C \text{ such that } v_i^+ > 0, v_i^- < 0$ },
- *Irev* = *Irr* \cup {*i* | *i* is pseudo-irreversible and v_i \ge 0, for all v \in C or v_i \le 0, for all v \in C}.

Question

How do flux coupling relations depend on the reversibility type of reactions?

Definition

Let i, j be two unblocked reactions. The coupling relations $\stackrel{=0}{\rightarrow}, \stackrel{=0}{\leftrightarrow}, \stackrel{\sim}{\rightarrow}^{\lambda}$ are defined in the following way:

- $i \stackrel{=0}{\rightarrow} j$ if for all $v \in C$, $v_i = 0$ implies $v_j = 0$.
- 2 $i \stackrel{=0}{\leftrightarrow} j$ if for all $v \in C$, $v_i = 0$ is equivalent to $v_j = 0$.
- **③** $i \backsim^{\lambda} j$ if there exists $\lambda \in \mathbb{R}$ such that for all $v \in C, v_j = \lambda v_i$.

Theorem

Let *i*, *j* be two unblocked reactions such that at least one of the relations $i \stackrel{=0}{\rightarrow} j$, $i \stackrel{=0}{\leftrightarrow} j$ or $i \backsim^{\lambda} j$ is satisfied. Then either (a) or (b) holds: (a) *i* and *j* are both (pseudo-)irreversible: $i, j \in Irev \cup Prev$. (b) *i* and *j* are both fully reversible: $i, j \in Frev$.

Pseudo-irreversible reactions

Proposition

Suppose i, j are unblocked, $i \in Prev$ and $j \in Irev \cup Prev$. Then the following are equivalent

$$\begin{array}{ccc} \bullet & i \stackrel{= 0}{\rightarrow} j \\ \bullet & i \stackrel{= 0}{\leftrightarrow} j \\ \bullet & i \stackrel{\sim \lambda}{\rightarrow} j \end{array}$$

	Irev				Prev	,	Frev		
i/j	$\stackrel{=0}{\rightarrow}$	$\stackrel{=0}{\leftrightarrow}$	\sim^{λ}	$\stackrel{=0}{\rightarrow}$	$\stackrel{=0}{\leftrightarrow}$	\sim^{λ}	$\stackrel{=0}{\rightarrow}$	$\stackrel{=0}{\leftrightarrow}$	\sim^{λ}
Irev									
Prev									
Frev									

- Coupling relations do not occur for arbitrary pairs of reactions
- Many cases are not possible (only 10/27 possible cases of reaction couplings)

	Irev				Prev	,	Frev			
i/j	$\stackrel{=0}{\rightarrow}$	$\stackrel{=0}{\leftrightarrow}$	\sim^{λ}	$\stackrel{=0}{\rightarrow}$	$\stackrel{=0}{\leftrightarrow}$	\sim^{λ}	$\stackrel{=0}{\rightarrow}$	$\stackrel{=0}{\leftrightarrow}$	\sim^{λ}	
Irev										
Prev										
Frev									\checkmark	

• Fluxes through pseudo-irreversible (or fully reversible) reactions that are coupled are proportional to each other (enzyme subset)

	Irev				Prev	,	Frev		
i/j	$\stackrel{=0}{\rightarrow}$	$\stackrel{=0}{\leftrightarrow}$	\sim^{λ}	$\stackrel{=0}{\rightarrow}$	$\stackrel{=0}{\leftrightarrow}$	\sim^{λ}	$\stackrel{=0}{\rightarrow}$	$\stackrel{=0}{\leftrightarrow}$	\sim^{λ}
Irev									
Prev									
Frev								\checkmark	

- Symmetric couplings can occur only between reactions with the same reversibility type
- Reactions in an enzyme subset must have the same reversibility type

	Irev				Prev	,	Frev		
i/j	$\stackrel{=0}{\rightarrow}$	$\stackrel{=0}{\leftrightarrow}$	\sim^{λ}	$\stackrel{=0}{\rightarrow}$	⇒0	\sim^{λ}	$\stackrel{=0}{\rightarrow}$	⊖=0	\sim^{λ}
Irev									
Prev									
Frev									\checkmark

• Only a zero flux through an irreversible reaction may imply a zero flux through another irreversible reaction

- Compute a set of generators of the flux cone *C* using existing tools for polyhedral computations
- Classify the reactions according to their reversiblity type
- Apply the mathematical results to identify blocked and coupled reactions

- Compute a set of generators of the flux cone *C* using existing tools for polyhedral computations
- Classify the reactions according to their reversiblity type
- Apply the mathematical results to identify blocked and coupled reactions

- Compute a set of generators of the flux cone *C* using existing tools for polyhedral computations
- Classify the reactions according to their reversiblity type
- Apply the mathematical results to identify blocked and coupled reactions

- Compute a set of generators of the flux cone *C* using existing tools for polyhedral computations
- Classify the reactions according to their reversiblity type
- Apply the mathematical results to identify blocked and coupled reactions

Computational results

Metabolic network	Blk	Irev	Prev	Frev	MMB	FCMMB	TOTAL	FCF
Red Blood Cell	0	31	14	6	2.32	0.26	2,58	110.65
Central metabolism of E. coli	0	92	18	0	214.49	2.55	217,04	477.14
Human cardiac mitochondria	121	83	3	9	1262.65	0.34	1262,99	13426.91
Helicobacter pylori	346	128	15	39	13551.44	0.43	13551,87	318374.15
E. coli K-12	435	480	49	110	261306.15	5.32	261311,47	≥ 1 week