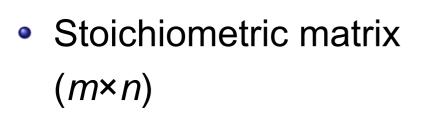
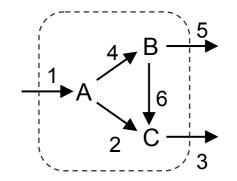
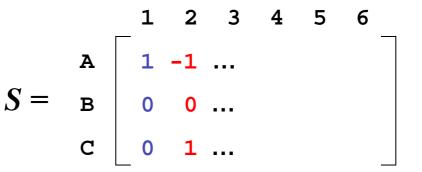
Flux Coupling Analysis, Part I

Alexander Bockmayr, Sayed-Amir Marashi (BioSystems, 2010)




1


Flux Coupling Analysis I

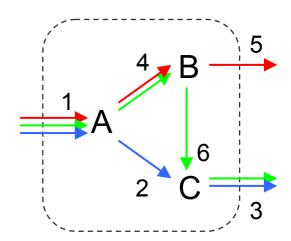
Definitions (1)

 A metabolic network (made by "reconstruction")

• v : Flux vector; v_i : Flux through reaction i

Definitions (2)

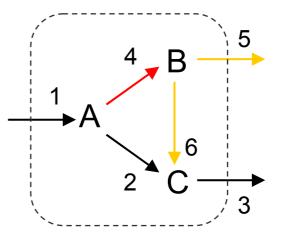
 In constraint-based modeling of metabolic networks, it is usually assumed that steady state condition holds:


• *S*.*v* = 0 (Stoichiometric constraints)

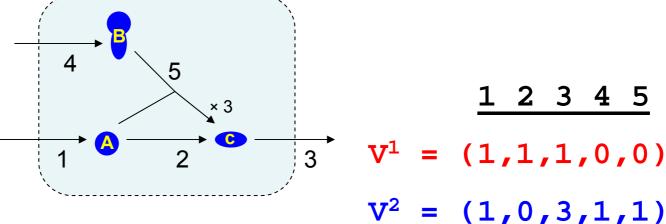
• $\forall i \in Irr : v_i \ge 0$ (Thermodynamic constraints)

Definitions (3)

 An "elementary mode" in a metabolic network can be defined as a steady state flux distribution involving a minimal set of reactions.

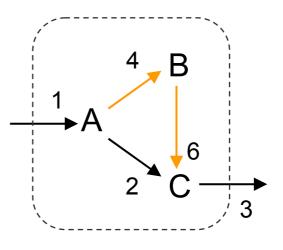

$$\frac{1 \ 2 \ 3 \ 4 \ 5 \ 6}{V^1} = (1,0,0,1,1,0)$$
$$V^2 = (1,0,1,1,0,1)$$
$$V^3 = (1,1,1,0,0,0)$$

• $i \xrightarrow{=0} j$: for all steady state flux vectors v, $v_i = 0$ implies $v_j = 0$


(directionally coupled)

• $4 \xrightarrow{=0} 5$ • $4 \xrightarrow{=0} 6$




• $i \leftrightarrow j$: for all steady state flux vectors v, $v_i=0$ implies $v_j=0$ and vice versa

(partially coupled)

• $i \Leftrightarrow j$: for all steady state flux vectors v, when v_i and v_j are nonzero, v_i/v_j =const. (fully coupled)

7

Bockmayr/Marashi

Flux Coupling Analysis I

 In metabolic networks, flux coupling is biologically important because functionally related reactions are usually coupled to each other.

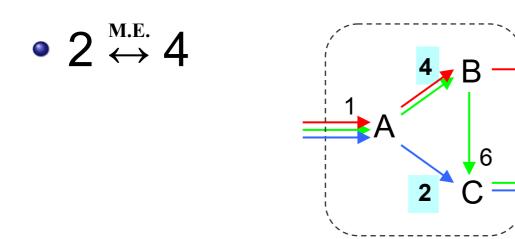
• When two fluxes are not coupled, they are "uncoupled".

Flux coupling and EFMs

Theorem 1

Let N be a metabolic network with flux cone C and set of elementary modes E. For any two reactions i and j, the following are equivalent:

- For all $v \in C$, $v_i = 0$ implies $v_j = 0$.
- For all $e \in E$, $e_i = 0$ implies $e_j = 0$.

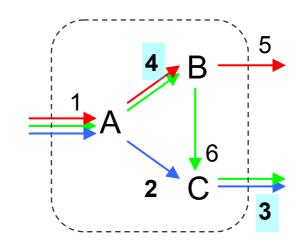

Flux coupling and EFMs II

Corollary

Let i, j be two non-blocked reactions in a metabolic network N with set of elementary modes E.

- i is directionally coupled to j if and only if for all e ∈ E,
 e_i = 0 implies e_i = 0.
- i and j are partially coupled if and only if for all e ∈ E,
 e_i = 0 implies e_i = 0 and vice versa.
- i and j are fully coupled if and only if there exists a constant c ≠ 0 such that for all e ∈ E, e_i = c · e_i.

i ↔ *j*: *i* and *j* never appear in the same elementary mode (mutually exclusive)


Bockmayr/Marashi

Flux Coupling Analysis I

5 November 2010

i ↔ *j*: *i* and *j* are uncoupled, but they are not mutually exclusive

(sometimes coupled)

• $3 \stackrel{\text{s.c.}}{\leftrightarrow} 4$

Flux Coupling Analysis I

5 November 2010

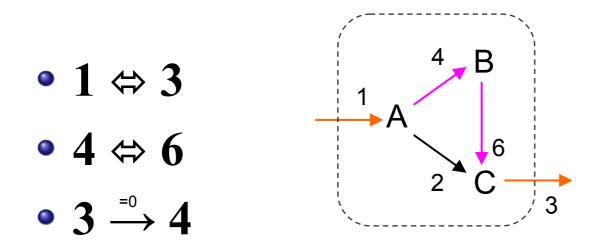
Motivation

 When a metabolic network is "reconstructed", some reactions might be missing compared to the actual network.

 Do these missing reactions influence the results of flux coupling analysis?

13

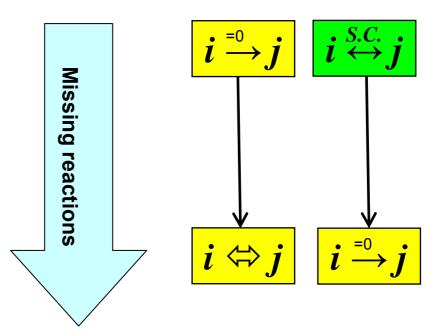
Flux coupling analysis and missing reactions (1)



Bockmayr/Marashi

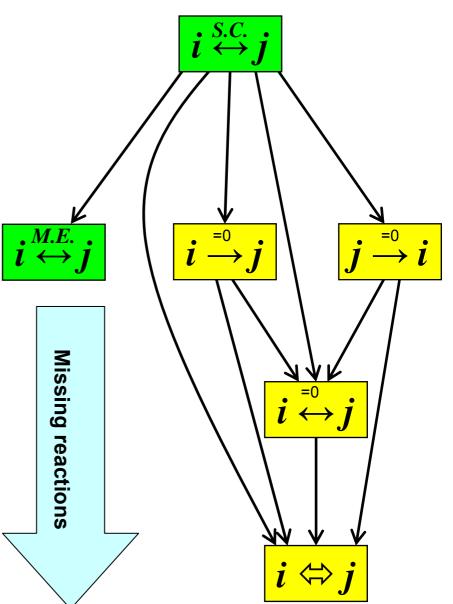
Flux Coupling Analysis I

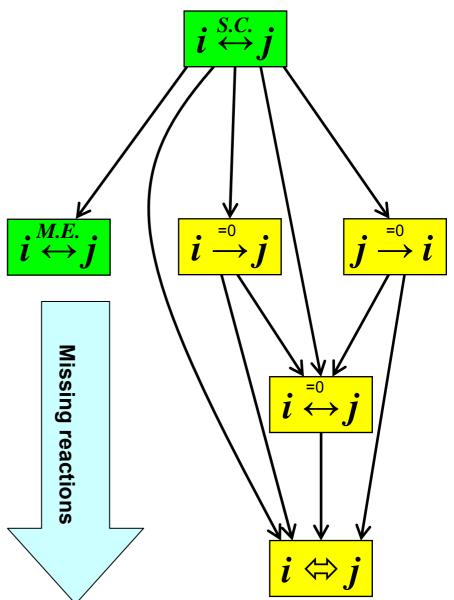
5 November 2010


Flux coupling analysis and missing reactions (2)

Bockmayr/Marashi

Flux coupling analysis and missing reactions (3)


 Some possible changes in flux coupling due to missing reactions in the network


Flux coupling analysis and missing reactions (4)

- If some reactions are not included in metabolic networks, flux coupling relations in the smaller network may be different from flux coupling relations in actual (complete networks).
- What relations in complete metabolic networks can convert to other relations in an incomplete network?

- Arrow from R₁ to R₂: having R₁ in actual network, but having R₂ in an incomplete network
- Yellow : Coupling
- Green : Uncoupling

 Uncoupled reaction pairs might be detected as coupled when networks are incomplete.

19

Conclusion

- Two reactions might be uncoupled in a complete network, but due to missing reactions (lack of knowledge) they might be detected <u>wrongly</u> as coupled.
- If two reactions are uncoupled in an incomplete network, they are certainly uncoupled in the actual (complete) networks.

Test case 1

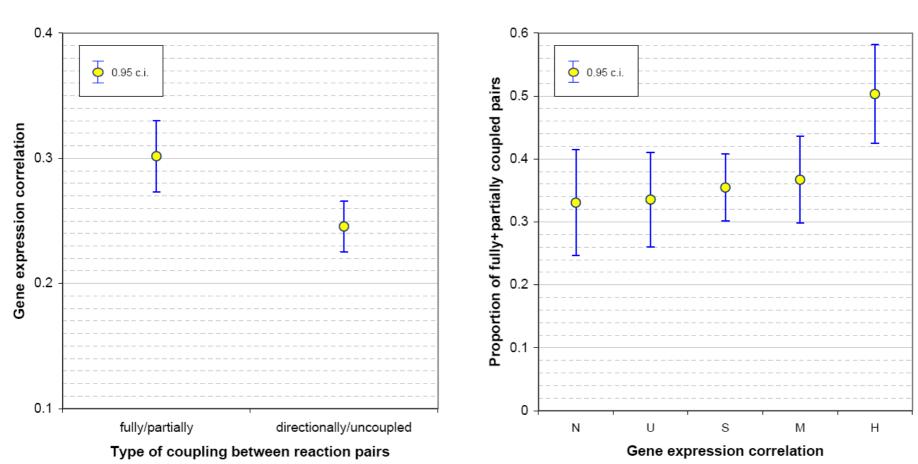
- Comparing two versions of *E. coli* network
- Computing the number of changes in coupling relations

21

Change in the coupling type	frequency	Change in the coupling type	frequency
$F \Rightarrow P$	12	$P \Rightarrow F$	0
$F \Rightarrow D$	1169	$D \Rightarrow F$	0
$F \Rightarrow U$	763	$U \Rightarrow F$	0
$P \Rightarrow D$	0	$D \Rightarrow P$	0
$P \Rightarrow U$	0	$U \Rightarrow P$	0
$D \Rightarrow U$	241	$U \Rightarrow D$	2

Changes in flux coupling and uncoupling relations between two E.coli metabolic models.

Bockmayr/Marashi


Test case 2

- Correlation between fully-coupled reactions and the co-expression of their corresponding genes (based on an older version of *E. coli* network)
- The analysis was repeated for the new version of *E. coli* network.

23

Test case 2

- Coupling relations of the "fully-coupled" reactions in the old network were updated.
- Some "fully-coupled" reactions now become directionally-coupled or even uncoupled.
- The pairs that are still fully coupled in the recent version of *E. coli* network, show higher gene expression correlations.

В

Bockmayr/Marashi

Flux Coupling Analysis I

5 November 2010

25

Α