Metabolic network analysis Optimization-based methods

Laszlo David

Mathematics in Life Sciences Freie Universität Berlin

29 October, 2010

Laszlo David Optimization-based methods

Linear Programming

What is linear programming?

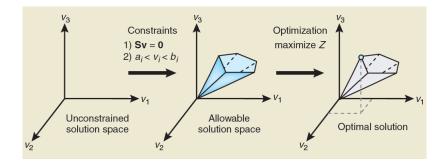
Linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints.

A linear program in standard form

 $\begin{array}{ll} \min & c^t x \\ s.t. & Ax = b \\ & x \ge 0 \end{array}$

Linear Programming

What is linear programming?


Linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints.

A linear program in standard form

$$\begin{array}{ll} \min & c^t x\\ s.t. & Ax = b\\ & x \ge 0 \end{array}$$

Optimization-based methods

Flux Balance Analysis

Motivation

Given a metabolic network find the most suitable flux distribution for a certain task.

- Optimal flux distribution for biomass production (growth).
- Minimize ATP production to guarantee optimal metabolic energy efficiency.
- Maximize the production of a chosen metabolite to determine production capabilities of a given network.

Flux Balance Analysis

Motivation

Given a metabolic network find the most suitable flux distribution for a certain task.

- Optimal flux distribution for biomass production (growth).
- Minimize ATP production to guarantee optimal metabolic energy efficiency.
- Maximize the production of a chosen metabolite to determine production capabilities of a given network.

Flux Balance Analysis

Motivation

Given a metabolic network find the most suitable flux distribution for a certain task.

- Optimal flux distribution for biomass production (growth).
- Minimize ATP production to guarantee optimal metabolic energy efficiency.
- Maximize the production of a chosen metabolite to determine production capabilities of a given network.

Flux Balance Analysis

Motivation

Given a metabolic network find the most suitable flux distribution for a certain task.

- Optimal flux distribution for biomass production (growth).
- Minimize ATP production to guarantee optimal metabolic energy efficiency.
- Maximize the production of a chosen metabolite to determine production capabilities of a given network.

Method

Step 1.

Identify an objective function Z.

Step 2.

Set bounds on the flux variables ($v_i^{min} \le v_i \le v_i^{max}$ for al $i \in \{1, ..., n\}$)

Step 3.

Solve the linear program: $min \qquad Z^t v$ $s.t. \qquad Sv = 0$ $v^{min} < v < v^{max}$

ヘロン 人間 とくほ とくほ とう

э

Method

Step 1.

Identify an objective function Z.

Step 2.

Set bounds on the flux variables ($v_i^{min} \le v_i \le v_i^{max}$ for all $i \in \{1, ..., n\}$)

Step 3.

Solve the linear program: $min \qquad Z^t v$ $s.t. \qquad Sv = 0$ $v^{min} < v < v^{max}$

ヘロン ヘアン ヘビン ヘビン

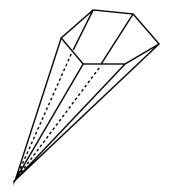
э

Method

Step 1.

Identify an objective function Z.

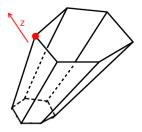
Step 2.

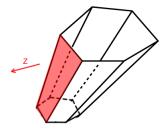

Set bounds on the flux variables ($v_i^{min} \le v_i \le v_i^{max}$ for all $i \in \{1, ..., n\}$)

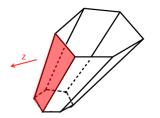
Step 3.

Solve the linear program: $min \qquad Z^t v$ $s.t. \qquad Sv = 0$ $v^{min} < v < v^{max}$

ヘロア ヘビア ヘビア・


э





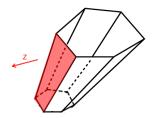
Flux Variability analysis

Question

What happens when there are multiple flux distributions with the same 'best' objective value? (i.e. the set of solution is a face of the polyhedron)

Importance

The biological conclusions drawn from different optima can be different.


ヘロト ヘヨト ヘヨト ヘ

Freie Universität

Flux Variability analysis

Question

What happens when there are multiple flux distributions with the same 'best' objective value? (i.e. the set of solution is a face of the polyhedron)

Importance

The biological conclusions drawn from different optima can be different.

< 🗇 🕨

Freie Universität

Flux Variability analysis

Idea 1

Find all flux distributions that have the same 'best' objective value. (Computationally expensive)

ldea 2

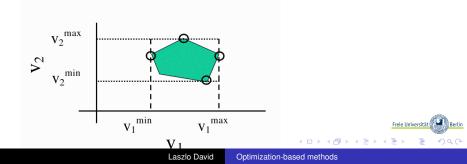
Instead of finding all flux distributions, find the range in which the fluxes vary. (Flux variability analysis)

Flux Variability analysis

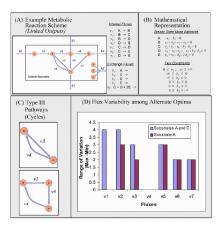
Idea 1

Find all flux distributions that have the same 'best' objective value. (Computationally expensive)

Idea 2


Instead of finding all flux distributions, find the range in which the fluxes vary. (Flux variability analysis)

Example


Flux variability analysis

 $\begin{array}{ll} \text{Solve the linear program for all } j \in \{1,...,n\}:\\ \begin{array}{ccc} \min/max & v_j \\ s.t. & Sv = 0 \\ v^{min} \leq v \leq v^{max} \\ Z^t v = Z_{obj} \end{array}$

Laszlo David

ヘロン 人間 とくほど くほとう

Freie Universität

ъ

Berlin

Advantages

- For an objective function we get a 'fast' answer what the optimal flux distribution is.
- Successfully employed for several microorganisms.

Drawbacks

- Sensitivity to the definition of objective function.
- Optimal flux distribution might not be unique.
- Microorganisms could use different optimization criteria depending on their environment.
- The exploration of all suitable objective function is a difficult task.

< 🗇 🕨

Advantages

- For an objective function we get a 'fast' answer what the optimal flux distribution is.
- Successfully employed for several microorganisms.

Drawbacks

- Sensitivity to the definition of objective function.
- Optimal flux distribution might not be unique.
- Microorganisms could use different optimization criteria depending on their environment.
- The exploration of all suitable objective function is a difficult task.

▲ 同 ▶ | ▲ 三 ▶

Advantages

- For an objective function we get a 'fast' answer what the optimal flux distribution is.
- Successfully employed for several microorganisms.

Drawbacks

- Sensitivity to the definition of objective function.
- Optimal flux distribution might not be unique.
- Microorganisms could use different optimization criteria depending on their environment.
- The exploration of all suitable objective function is a difficult task.

< < >> < <</>

Advantages

- For an objective function we get a 'fast' answer what the optimal flux distribution is.
- Successfully employed for several microorganisms.

Drawbacks

- Sensitivity to the definition of objective function.
- Optimal flux distribution might not be unique.
- Microorganisms could use different optimization criteria depending on their environment.
- The exploration of all suitable objective function is a difficult task.

(< ∃) < ∃)</p>

< < >> < <</>

Advantages

- For an objective function we get a 'fast' answer what the optimal flux distribution is.
- Successfully employed for several microorganisms.

Drawbacks

- Sensitivity to the definition of objective function.
- Optimal flux distribution might not be unique.
- Microorganisms could use different optimization criteria depending on their environment.
- The exploration of all suitable objective function is a difficult task.

< < >> < <</>

Advantages

- For an objective function we get a 'fast' answer what the optimal flux distribution is.
- Successfully employed for several microorganisms.

Drawbacks

- Sensitivity to the definition of objective function.
- Optimal flux distribution might not be unique.
- Microorganisms could use different optimization criteria depending on their environment.
- The exploration of all suitable objective function is a difficult task.

프 🖌 🛪 프 🕨

< 🗇 🕨

Questions

Questions?

Laszlo David Optimization-based methods