Synchronous state transition graph

- vertex set X (state space)
- edges (x, f(x))
 - every state has only one successor
 - attractors are fixed points and cycles corresponding to periodical points

Synchronous state transition graph

- vertex set X (state space)
- edges (x, f(x))
 - every state has only one successor
 - attractors are fixed points and cycles corresponding to periodical points

Gradual evolution

- edges (x, y) with $y_i := x_i + \operatorname{sgn}(f_i(x) x_i)$
 - not commonly used

Sequential update

- components are updated according to a fixed sequence
- new component values are taken into account while updating

Recipe: (1) define $F^i: X \to X$ by $F^i_i(x) := f_i(x)$ and $F^i_j(x) := x_j$ for $j \neq i$

(2) choose tuple $\pi = (i_1, \dots, i_l)$ of arbitrary length *l* in $\{1, \dots, n\}^l$

(3) define
$$F^{\pi} := F^{i_1} \circ \cdots \circ F^{i_2} \circ F^{i_1}$$

(4) analyze dynamics of F^{π}

- permutations of $\{1, \ldots, n\}$ often used as update order
- still very rigid constraints on trajectories

Stochastic update

choose update order randomly at each update step (probability distribution reflecting biological data)

Asynchronous update

Successor (asynchronous update): x' is a successor state of x if and only if x' = f(x) = x or $x'_i = x_i + \text{sgn}(f_i(x) - x_i)$ for some $i \in \{1, ..., n\}$ satisfying $x_i \neq f_i(x)$ and $x'_j = x_j$ for all $j \neq i$.

- gradual activity level evolution
- all time delays are distinct
- \Rightarrow non-deterministic representation of possible behaviors
 - inclusion of (partial) synchronous update possible, but not commonly used
 - cyclic attractors (attr. with card. >1) may be more complex than in the deterministic case
 - graph theoretical definitions for trajectories, trap sets, attractors carry over to sequential and asynchronous state transition graphs
 - synchronous and asynchronous update yield the same steady states, trajectories and cyclic attractors may differ

Choosing your Path

- complexity of time constraints may increase with path length (memory)
- data on process times constrain STG (modeling)
- choice of trajectories imposes time delay constraints (analysis)

bybrid models (PLDE systems, hybrid automata)

Stability

Analyze effects of perturbations

- change in component values (minimal perturbations)
- change in topology/update functions (structural perturbations)
- change in update order

on dynamical aspects

- behavior originating in some initial state (states visited, reachable attractors, number of transients)
- attractors and basins of attraction

Derrida plot: study development of small fluctuations via evolution of Hamming distance over time

Update issues: compare behavior under different update assumptions

Patterning of the Drosophila wing disc

A. González, C. Chaouiya, D. Thieffry, *Logical modelling of the role of the Hh pathway in the patterning of the Drosophila wing disc*, Bioinformatics 24, 2008

Aim: qualitative model of anterior-posterior boundary definition during wing disc development

Patterning of the Drosophila wing disc

A. González, C. Chaouiya, D. Thieffry, *Logical modelling of the role of the Hh pathway in the patterning of the Drosophila wing disc*, Bioinformatics 24, 2008

Aim: qualitative model of anterior-posterior boundary definition during wing disc development

Consistent discrete representation of

- gene regulation
- signal transduction
- diffusion
- sequestration
- as intercellular process

Modeling

intercellular process:	four virtual cells represent anterior (c1), boundary (c2, c3) and posterior compartments (c4)
regulation:	positive/negative interactions
signal transduction:	path of interactions
diffusion:	symmetrical positive interactions between adjacent Hh nodes
sequestration:	negative edge from Ptc to Hh nodes of adjacent cells

+ multi-value + logical function

Simplifications

- several components omitted in signal transduction, emission, reception
- signal transduction mechanism (Smo under direct control of Hh and Ptc)
- omission of further target genes depending on concentration gradient
- ignoring spatial information concerning single cells (membrane, interior, exterior)
- model cells represent regions of AP boundary

The model

Regulatory node	Incoming interactions	Experimental data	Logical function
CiA _i	$\mathrm{Smo}_i \rightarrow \mathrm{CiA}_i$	Clones for <i>smo⁻</i> in the boundary result in loss of CiA targets such as En, Pic and Dpp (Chen and Struhl, 1996; Strigini and Cohen, 1997). By contrast, overexpression of Smo results in the accumulation of full-length Ci in anterior cells (Jia <i>et al.</i> , 2003).	CiA _r =1 IF NOT($En_r^{[1]}$) AND Smo $_r^{[1]}$ CiA _r =2 IF NOT($En_r^{[2]}$) AND Smo $_r^{[2]}$
	En∉⊣CiA∉	Loss of En function upregulates <i>ci</i> expression in posterior cells, whereas ectopic En activity represses <i>ci</i> expression in anterior cells (Dominguez <i>et al.</i> , 1996; Eaton and Kornberg, 1990).	
CiR _i	$Smo_f \dashv CiR_f$ $En_f \dashv CiR_f$	See evidence of CiA regulation by En and Smo.	$CiR_r=1$ IF NOT $(En_r^{[2]})$ AND NOT $(Smo_r^{[1,2]})$
Dppi	$CiA_i \rightarrow Dpp_i$	Expression of a <i>ci</i> allele that cannot be proteolyzed induces high levels of <i>dpp</i> expression anteriorly (Méthot and Basler, 1999).	$Dpp_i=2 \text{ IF}$ (CiA ^[1,2] AND NOT(En ^[1,2])
	$CiR_i \dashv Dpp_i$	Cells mutant for ci^- in anterior and boundary cells express low levels of dpp (Méthot and Basler, 1999).	$Dpp_{i}=1 IF$ $(CiA^{[1,2]}AND En^{[1,2]})$
	En _i ⊣ Dpp _i	Loss of En function in posterior cells induces <i>dpp</i> expression (Méthot and Basler, 1999; Smitcola <i>et al.</i> , 1995; Zacca <i>et al.</i> , 1995), whereas ectopic En in boundary cells downregulates <i>dpp</i> expression (de Cells and Ruiz-Gómez, 1995; Smitcola <i>et al.</i> , 1995).	or (NOT(CiA _y ^[1,2] and NOT(Ei _y ^[1,2]) and NOT(CiR _y ^[1]))
En;	$CiA_i \rightarrow En_i$	In the absence of PKA, CiA is upregulated and induces <i>en</i> expression (Wang <i>et al.</i> , 1999), whereas in <i>cl</i> ⁻ mutant cells in the boundary, CiA is lost and dow megulates <i>en</i> . By contrast, posterior <i>en</i> expression is not affected by the <i>cl</i> ⁻ mutation (Aza-Blane <i>et al.</i> , 1997; Méthot and Basler, 1999; Strigini and Cohen. 1997).	$\begin{split} & En_{i}=1 ~(i\neq 4) ~ IF \\ & CiA_{i}^{D_{1}} \\ & En_{4}=2 \end{split}$
Hb,	$\mathrm{Hh}_{j} \to \mathrm{Hh}_{i}$	Loss of Hh in posterior cells reduces Hh signalling non cell-autonomously in boundary cells (Baster and Struhl, 1994), whereas ectopic <i>hh</i> expressing cells in the anterior compartment non cell-autonomously upregulate the Hh pathway (Zecca <i>et al.</i> , 1995).	$ \begin{split} & Hh_{s} = 2 \ IF \\ & = h_{s}^{[2]} \\ & OR \ (Hh_{s}^{[2]} \ AND \ Hh_{s}^{[2]}) \\ & OR \ (Hh_{s}^{[2]} \ AND \ NOT(Pe_{s}^{[2]})) \\ & OR \ (Hh_{s}^{[1]} \ AND \ NOT(Pe_{s}^{[2]}) \ AND \ Hh_{s}^{[1]} \ AND \ NOT(Pe_{s}^{[2]})) \\ & OR \ (Hh_{s}^{[1]} \ AND \ NOT(Pe_{s}^{[2]}) \ AND \ Hh_{s}^{[1]} \ AND \ NOT(Pe_{s}^{[2]})) \end{split} $
	$\operatorname{Ptc}_j\dashv\operatorname{Hh}_i$	In the pkc^- discs, the stripe of the reporter pkc -lacZ is broader (Chen and Struhl, 1996).	$ \begin{split} & Hh_{\mu} = 1 \ IF \\ & \text{NOT}(\text{Er}_{\ell}^{2}) \text{ AND } (\\ & (Hh_{\ell}^{1/2} \text{ AND NOT}(\text{Pre}_{\ell}^{1/2}) \text{ AND NOT}(Hh_{\ell}^{1/2})) \\ & (H(H_{\ell}^{1/2} \text{ AND Pre}_{\ell}^{1/2} \text{ AND NOT}(Hh_{\ell}^{1/2})) \\ & \text{OR } (Hh_{\ell}^{21} \text{ AND Pre}_{\ell}^{1/2} \text{ AND NOT}(Hh_{\ell}^{1/2}))) \end{split} $
	$\mathrm{En}_{f} \to \ \mathrm{Hh}_{f}$	In posterior en- mutant cells, hh is downregulated (Alexandre and Vincent,	OR $(Hh_{j}^{[1]} AND Pte_{j}^{[2]} AND Hh_{k}^{[2]} AND Pte_{k}^{[2]})$

Results

Table 2. Stable states reached for the wild-type situation (vector 1) and for genetic alterations (vectors 2-12	Table 2.	Stable states r	eached for the	wild-type	situation	(vector	1) and fo	or genetic	alterations	(vectors 2-12	0
---	----------	-----------------	----------------	-----------	-----------	---------	-----------	------------	-------------	---------------	---

Gene		CiA				CiR			Dpp					Ptc				Smo				Hh				En			
Cell	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	
1 WT	0	1	2	0	1	0	0	0	0	2	1	0	1	2	2	1	0	1	2	2	0	1	2	2	0	0	1	2	
2 posterior hh-	0	0	0	0	1	1	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	\odot	0	0	0	2	
3 boundary ptc-	2	2	2	0	0	0	0	0	1	1	1	0	2	$^{\odot}$	\odot	1	2	2	2	2	2	2	2	2	1	1	1	2	
4 boundary Smo-	2	0	0	0	0	1	1	0	1	0	0	0	2	1	1	1	2	0	0	2	2	2	2	2	1	0	0	2	
5 anterior Smo+	1	1	2	0	0	0	0	0	2	2	1	0	2	2	2	1	1	1	2	2	0	1	2	2	0	0	1	2	
6 anterior ci	\odot	1	2	0	0	0	0	0	1	2	1	0	1	2	2	1	0	1	2	2	0	1	2	2	0	0	1	2	
	$^{\odot}$	2	2	0	0	0	0	0	1	1	1	0	1	2	2	1	2	2	2	2	1	2	2	2	0	1	1	2	
7 boundary ci-	2	0	0	0	0	0	0	0	1	1	1	0	2	1	1	1	2	2	2	2	2	2	2	2	1	0	0	2	
8 cir ⁺ disc	2	2	2	0	2	2	2	2	1	1	1	0	1	1	1	0	2	2	2	2	2	2	2	2	1	1	1	2	
9 half boundary CiA-	0	0	2	0	0	0	0	0	1	1	1	0	1	1	2	1	2	2	2	2	2	2	2	2	0	0	1	2	
10 half boundary CiA ⁺	0	0	2	0	1	0	0	0	1	1	1	0	2	2	2	1	0	1	2	2	0	1	2	2	1	1	1	2	
11 boundary high en	2	0	0	0	0	0	0	0	1	0	0	0	2	1	1	1	2	2	2	2	2	2	2	2	1	2	2	2	
12 posterior hypomorph en	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	

► simulation of wild type → unique stable state capturing AP boundary patterning

- simulation of various mutants by fixing levels of misexpressed genes, results in agreement with experimental observations data used for modeling?
- predictions (not yet experimentally verified)

Kauffman networks

Question by S. Kauffman: How did order evolve in organisms?

- selection
- intrinsic properties of networks

Cell differentiation (S. Kauffman, 1969)

- structure of gene regulatory networks unknown
- regulatory rules unknown
- but
- GRNs can be modeled as Boolean networks
- check for dynamical properties of biological importance in random networks

Properties of interest

Aspects of order

- small attractors
- big basins of attraction, small number of attractors
- short transients (steps leading from an initial state to an attractor)
- Iow sensitivity to perturbations

Biological systems

- order and complexity
- robustness and adaptability

Random NK Boolean networks

Construct (big) random networks with

- N vertices
- K predecessors for each vertex
- update function based on interaction graph
- \rightarrow network ensembles

Procedure

- choose randomly inputs for vertices
- randomly assign update function per vertex

random interaction graph and update logic \Rightarrow strongly disordered system

Can orderly behavior emerge?