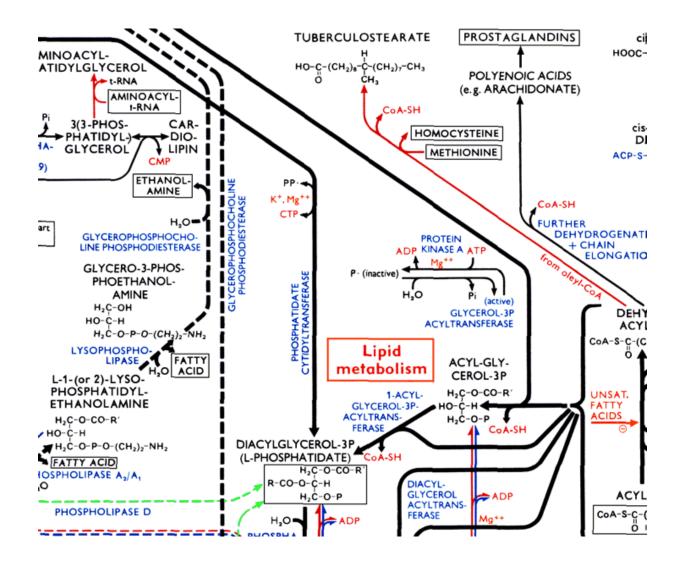
Metabolic network



http://www.expasy.ch/cgi-bin/show_thumbnails.pl

Questions

- Network consistency ~> blocked reactions, missing network elements
- Functional pathways and cycles ~> possible routes between specific inputs and outputs
- Network capabilities ~> maximal product yield
- Importance of reactions, correlated reactions ~> flux coupling
- Network design ~> effect of adding/deleting reactions, minimum cut sets
- Network flexibility and robustness ~> tolerance w.r.t. changes, set of all possible behaviors

Steady state assumption

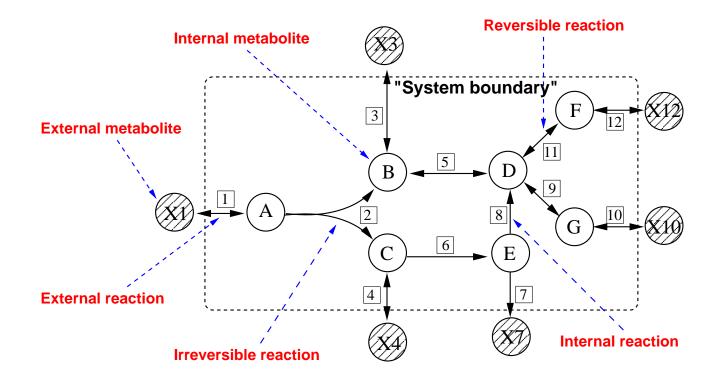
Dynamic modeling ~> changes in species concentration

$$\frac{dc(t)}{dt} = S \cdot v(t)$$

- S stoichiometric matrix $(S_{ij}: \text{ stoichiometric coefficient of re-} actant i in reaction j)$
- v(t) flux distribution or reaction rates, approximately v(t) = f(c(t), p, t), with parameter vector p.
- Steady state assumption: Assume metabolic concentrations and reaction rates are constant (on longer time scales).

• Metabolic balancing equation:
$$Sv = 0$$

Metabolic network



Stoichiometry and Irreversibility

 $S \in \mathbb{R}^{m \times n}$ Stoichiometric matrix \triangleright Rows \rightsquigarrow internal metabolites $i = 1, \ldots, m$ \triangleright Columns \rightsquigarrow internal and external reactions $j = 1, \ldots, n$ • v_i : flux through reaction j at steady state $v \in \mathbb{R}^n$ Stoichiometric constraints/flux balance principle: Sv = 0Thermodynamic constraints: $v_i \geq 0, i \in Irr$ Steady-state flux cone

$$C = \{ v \in \mathbb{R}^n \mid Sv = 0, v_i \ge 0, i \in Irr \}$$

 \rightsquigarrow describes all possible flux distributions

Polyhedral cones

- Convex cone: $C \subseteq \mathbb{R}^n$, with $\lambda x + \mu y \in C$ whenever $x, y \in C$ and $\lambda, \mu \geq 0$.
- Polyhedral cone: $C = \{x \in \mathbb{R}^n \mid Ax \ge 0\}$, for some $A \in \mathbb{R}^{m \times n}$.

Finitely generated cone

 $C = \operatorname{cone}\{g^1, \dots, g^s\} = \{\lambda_1 g^1 + \dots + \lambda_s g^s \mid \lambda_1, \dots, \lambda_s \ge 0\},$ for some $g^1, \dots, g^s \in \mathbb{R}^n$.

Theorem (Farkas-Minkowski-Weyl)

A convex cone is polyhedral if and only if it is finitely generated.

Describing the flux cone

Inner descriptions ~> flux vectors

- Elementary flux modes (Schuster et al.): unique for pointed and non-pointed cones, not minimal.
- Extreme pathways (Palsson et al.): minimal and unique for pointed cones ~> reconfiguration of the network not minimal for non-pointed cones.

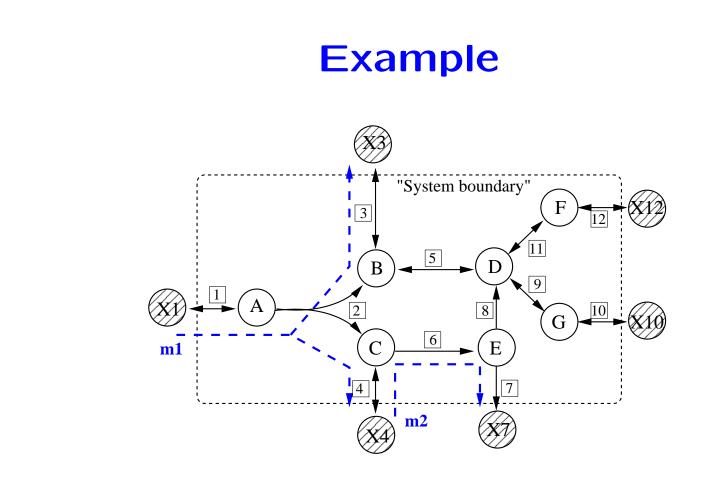
Outer descriptions ~> linear inequalities/irreversible reactions

Minimal metabolic behaviors and the reversible metabolic space (Larhlimi/Bockmayr): minimal and unique for general cones.

Elementary flux modes

Schuster et al.

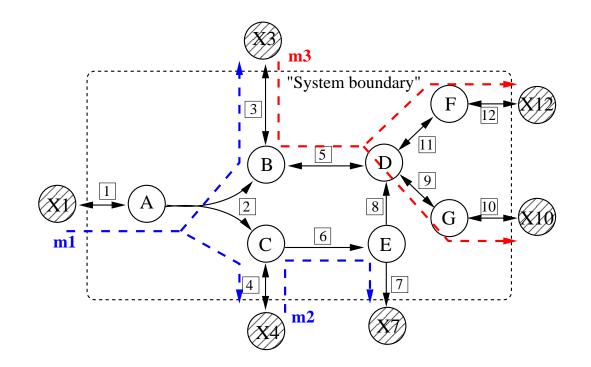
- $C = \{v \in \mathbb{R}^n \mid Sv = 0, v_i \ge 0, i \in Irr\}$ steady-state flux cone
- For $v \in \mathbb{R}^n$, let $Z(v) = \{i \in \{1, ..., n\} \mid v_i = 0\}$.
- $v \in C$ is an elementary flux mode if there do not exist $v', v'' \in C$, with $Z(v) \subsetneq Z(v'), Z(v) \subsetneq Z(v'')$ such that v = v' + v''.
- Equivalently, $v \in C$ is an elementary flux mode if there is no $v' \in C, v' \neq 0$ with $Z(v) \subsetneq Z(v')$.
- Finite set of generating vectors with maximum number of zero components, however not minimal.



• $m^1 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)$

• $m^2 = (0, 0, 0, -1, 0, 1, 1, 0, 0, 0, 0, 0)$

• m^1 and m^2 are elementary modes.



•
$$m^3 = (0, 0, 2, 0, 2, 0, 0, 0, 1, 1, 1, 1)$$

•
$$m^3 = m' + m''$$
, with

$$\bowtie m' = (0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0),$$

>
$$m'' = (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1)$$

• Since $m', m'' \in C, Z(m^3) \subsetneq Z(m'), Z(m^3) \subsetneq Z(m''), m^3$ is not an elementary flux mode.