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Questions

• Network consistency  blocked reactions, missing network

elements

• Functional pathways and cycles  possible routes between

specific inputs and outputs

• Network capabilities  maximal product yield

• Importance of reactions, correlated reactions  flux coupling

• Network design  effect of adding/deleting reactions, mini-

mum cut sets

• Network flexibility and robustness  tolerance w.r.t. changes,

set of all possible behaviors
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Steady state assumption

• Dynamic modeling  changes in species concentration

dc(t)

dt
= S · v(t)

• S stoichiometric matrix (Sij: stoichiometric coefficient of re-

actant i in reaction j)

• v(t) flux distribution or reaction rates, approximately v(t) =

f(c(t), p, t), with parameter vector p.

• Steady state assumption: Assume metabolic concentrations

and reaction rates are constant (on longer time scales).

• Metabolic balancing equation: Sv = 0
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Metabolic network
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Stoichiometry and Irreversibility

• Stoichiometric matrix S ∈ Rm×n

. Rows  internal metabolites i = 1, . . . ,m

. Columns  internal and external reactions j = 1, . . . , n

• vj: flux through reaction j at steady state v ∈ Rn

• Stoichiometric constraints/flux balance principle: Sv = 0

• Thermodynamic constraints: vi ≥ 0, i ∈ Irr

• Steady-state flux cone

C = {v ∈ Rn | Sv = 0, vi ≥ 0, i ∈ Irr}

 describes all possible flux distributions
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Polyhedral cones

• Convex cone: C ⊆ Rn, with λx + µy ∈ C whenever x, y ∈ C

and λ, µ ≥ 0.

• Polyhedral cone: C = {x ∈ Rn | Ax ≥ 0}, for some A ∈ Rm×n.

• Finitely generated cone

C = cone{g1, . . . , gs} = {λ1g
1 + · · ·+ λsg

s | λ1, . . . , λs ≥ 0},

for some g1, . . . , gs ∈ Rn.

• Theorem (Farkas-Minkowski-Weyl)

A convex cone is polyhedral if and only if it is finitely gene-

rated.
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Describing the flux cone

• Inner descriptions  flux vectors

. Elementary flux modes (Schuster et al.):

unique for pointed and non-pointed cones, not minimal.

. Extreme pathways (Palsson et al.):

minimal and unique for pointed cones  reconfiguration

of the network

not minimal for non-pointed cones.

• Outer descriptions  linear inequalities/irreversible reactions

. Minimal metabolic behaviors and the reversible metabolic

space (Larhlimi/Bockmayr):

minimal and unique for general cones.
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Elementary flux modes

Schuster et al.

• C = {v ∈ Rn | Sv = 0, vi ≥ 0, i ∈ Irr} steady-state flux cone

• For v ∈ Rn, let Z(v) = {i ∈ {1, . . . , n} | vi = 0}.

• v ∈ C is an elementary flux mode if there do not exist v′, v′′ ∈
C, with Z(v) $ Z(v′), Z(v) $ Z(v′′) such that v = v′+ v′′.

• Equivalently, v ∈ C is an elementary flux mode if there is no

v′ ∈ C, v′ 6= 0 with Z(v) $ Z(v′).

• Finite set of generating vectors with maximum number of

zero components, however not minimal.
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Example
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• m1 = (1,1,1, 1,0,0,0,0,0,0,0,0)

• m2 = (0,0,0,−1,0,1,1,0,0,0,0,0)

• m1 and m2 are elementary modes.
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• m3 = (0,0,2,0,2,0,0,0,1,1,1,1)

• m3 = m′+m′′, with

. m′ = (0,0,1,0,1,0,0,0,1,1,0,0),

. m′′ = (0,0,1,0,1,0,0,0,0,0,1,1)

• Since m′,m′′ ∈ C,Z(m3) ( Z(m′), Z(m3) ( Z(m′′), m3 is not
an elementary flux mode.


