
Cartoons and Text

"In the absence of lactose,
the repressor protein encoded
by the I gene binds to the
lac operator and prevents tran-
scription...."

I for many systems conceptual understanding only
I lack of information on kinetic parameters, molecular

concentrations, biochemical reaction mechanisms...
I resulting systems of differential equations

mostly not analytically solvable

I discrete modeling formalizes visual and verbal
description and allows rigorous mathematical
analysis
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Discrete modeling

I system description by means of discrete functions
I including structural information
I capturing of interaction character and impact

→ predicting/analyzing dynamics

Hypothesis: kinetic details of interactions less important than network
organization

I degree of coarseness (Boolean, multivalued, hybrid)

I varied applications
I derive structure and logic of networks from dynamics (reverse

engineering)
I modeling and analyzing (small) specific systems
I studying properties of classes of networks
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Boolean models

Ingredients:

I system with n components v1, . . . ,vn interpreted as variable in {0,1}
I n functions fi : {0,1}n→{0,1}
I system description f = (f1, . . . , fn) : {0,1}n→{0,1}n

I fi captures the rule to calculate the future value of vi from the current
values of its regulators

→ f holds information on network structure

→ f encodes system dynamics on state space {0,1}n

Heike Siebert, FU Berlin, Molecular Networks WS 10/11



Structure

α1 α2

+

−
+

+
+

f : {0, 1}2 → {0, 1}2,
(x1, x2) 7→ (x1∧x2, (x1∧x2)∨ (x1∧x2))

−

Given f : {0,1}n→{0,1}n

Interaction graph G(f ) of f

I represents dependencies
between components

I character of interactions

I possible context sensitivity
(non-monotonicity) resulting
in a multigraph

Consistency of f and G(f )
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Consistency of f and G(f )

I function f should be consistent with the interaction graph

I fi(x) only depends on xj if αj is predecessor of αi

I functionality of edges and sign consistency:
αi → αj : ∃s ∈ Bn : fj(s) 6= fj(si) and αi

+→ αj ⇔ fj(s) = si

Definition For x ∈ {0,1}n let G(x) be the graph with vertices α1, . . . ,αn and an
edge αj → αi if fi(x1, . . . ,xj , . . . ,xn) 6= fi(x1, . . . ,1− xj , . . . ,xn), with positive sign
if xj = fi(x) and negative otherwise. G(x) is called local interaction graph in x .
We call G(f ) :=

S
x∈{0,1}n G(x) global interaction graph of f .

I G(x) is a graph, G(f ) may be a multi-graph

I G(x) is a graph representation of the discrete Jacobian matrix of f in x

I consider behavior in BdH (x ,1) with dH(x ,y) := ∑
n
i=1 |xi − yi | (Hamming

distance)

I G(f ) represents the functional and sign consistent network topology of f
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Modeling

Modeling specific systems often starts with structural information:

I translate data on biochemical interactions into directed, signed (multi)graphs

Definition An interaction (multi-)graph (or wiring diagram) I is a labeled directed
multigraph with vertex set V := {α1, . . . ,αn}, n ∈ N, and edge set
E ⊆ V ×V ×{+,−}. In Boolean models, vertices are understood as {0,1}-variables.

vertex: component (genes, proteins, chemical complexes,...), set of components
(similar function, identification {gene, RNA, protein},...), signal,...

edge: inhibiting/activating activity (TFs, enzymes,...), complex forming,
information flow,...

value: activity status, concentration, configuration,...

I translate behavioral rules into Boolean function f : {0,1}n→{0,1}n

I for each component decide the impact of its predecessors in a given
state on its value→ choice of parameters

Consistency: I = G(f )
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Exploring the Structure

Consider interaction graph I = (V ,E)

Use graph theoretical characteristics and measures

I quantify organizational features of I

I importance of nodes

I reachability among nodes

I homogeneity/heterogeinity w.r.t. a given property

I relate to biological features

I robustness, sensitivity, control,...

I identify modules with characteristic function
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Degree distribution and clustering

I degree of a node: # of edges originating (outdegree) or ending
(indegree) in the node

I hubs: highest degree nodes

I degree distribution P(k): fraction of nodes with degree k
(indegree/outdegree distribution)
[cellular networks are often scale-free]

I neighborhood of a node v : set of nodes 6= v adjacent to v
(in/out-neighborhood)

I clique: completely connected subgraph

I clustering coefficient of a node: ratio of # of edges in neighborhood and
# of edges if neighborhood were a clique
[large average clustering coefficients indicate redundancy, cohesiveness;
observed in protein-protein interaction and metabolic networks]
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Paths and connectivity

I distance between two nodes: shortest path length connecting the nodes

I small world: average shortest path length of large networks stays small
[facilitates rapid spread of information in response to input; signal
transduction, protein interaction, metabolic networks]

I path redundancy [robustness]

I betweenness centrality of node v : ratio of # shortest paths from s to t
through v and total # of shortest st-paths
[importance of a node in flow from sources to sinks]

I connectivity of the network: existence of paths between every pair of
nodes (distinguish directed/undirected graphs)

I strongly connected directed graphs: all node pairs connected in
both directions

I strongly connected components: maximal subgraphs that are
strongly connected→ acyclic scc-graph with initial and terminal
components
[modularity of signaling networks]
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Modules and motifs

I modules of a network: subnetworks distinguishable by dense
intra-module and sparse inter-module connectivity

I identification should include biological characteristics: physical
location, function, evolutionary conservation

I difficulties: cross-talk, overlap, hierarchical modularity

I motifs of a network: significant, small-subgraphs of well-defined topology

I e.g. feedback loops, feedforward loops, cascades,...

I statistical importance (U. Alon et al.)

I classification and comparison of networks

Remark: structural analysis yields also dynamical information, but is
generally not sufficient for understanding corresponding
dynamical systems
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Dynamics
Given f : {0,1}n→{0,1}n

State transition graph S(f ) of f

I vertex set {0,1}n (state space)

I edge set {(x , f (x)) | x ∈ {0,1}n} – synchronous update

Trajectories: infinite paths (x(0),x(1), . . .) in S(f ) (simulation)

Note: conceptual differences to ODE/PLDE description

I explicit description of trajectories

I trajectories can merge

Consequences of synchronous update and finite state space

I deterministic behavior

I each trajectory ends in a cycle

I components of S(f ) consist of single cycle and attached trees
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Andy Wuensche, www.ddlab.com
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Attractors

Given state transition graph S(f )

Definition A set A of vertices (states) of S(f ) is called trap set, if no tra-
jectory starting in A can leave A. If in addition A is strongly connected,
then A is called attractor.

I attractors are terminal strongly connected components

I attractors are fixed points and periodic points

I every trajectory leads to an attractor (basins of attraction)

I distinct attractors are disjoint

I asymptotical behavior (biological meaningful)

Heike Siebert, FU Berlin, Molecular Networks WS 10/11



Perturbations

Minimal perturbation (noise): transiently flipping the value
of a component

I comparison of different initial conditions

I how does the change cascade through the network?

I change in basin of attraction/attractor

Structural perturbation (mutation): permanently changing a
coordinate function fi

I comparison of two different networks

I attractors, basins of attraction, stability,...
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Network Inference - Reverse Engineering

I analyzing binding sites and mutants

http://flymove.uni-muenster.de/

I time series data

I data discretization
I often many admissible models

Inferring interaction graphs: Given a function f : {0,1}n→{0,1}n, we can derive
an interactions graph consisting of functional edges in agreement with the dy-
namics determined by f by using the previously introduced formulas describing
functionality of edges and sign consistency.
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Being Aware of the Level of Abstraction

I omitting components, simplifying processes

I logical idealization of regulatory interactions

I all or nothing functionality

I ignoring spatial and temporal data
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