Mathematical optimization/programming problem

\[
\max\{g(x) \mid f_j(x) \leq 0, x \in D\} \text{ or } \min\{g(x) \mid f_j(x) \leq 0, x \in D\}
\]

with \(D \subseteq \mathbb{R}^n \), \(g, f_j : D \to \mathbb{R} \), \(j = 1, \ldots, m \).
- **Mathematical optimization/programming problem**

\[
\begin{align*}
\max \{ g(x) \mid f_j(x) \leq 0, \ x \in D \} \ & \text{or} \ \min \{ g(x) \mid f_j(x) \leq 0, \ x \in D \}
\end{align*}
\]

with \(D \subseteq \mathbb{R}^n \), \(g, f_j : D \rightarrow \mathbb{R} \), \(j = 1, \ldots, m \).

- **Feasible solution:** \(x^* \in D \) with \(f_j(x^*) \leq 0 \), for all \(j \).
Mathematical optimization/programming problem

\[
\max\{g(x) \mid f_j(x) \leq 0, x \in D\} \text{ or } \min\{g(x) \mid f_j(x) \leq 0, x \in D\}
\]

with \(D \subseteq \mathbb{R}^n, \ g, f_j : D \rightarrow \mathbb{R}, \ j = 1, \ldots, m. \)

Feasible solution: \(x^* \in D \) with \(f_j(x^*) \leq 0, \) for all \(j. \)

Optimal solution: Feasible solution such that

\[
g(x^*) = \max\{g(x) \mid f_j(x) \leq 0, \text{ for all } j, \ x \in D\}.
\]
Mathematical optimization/programming problem

\[\max \{ g(x) \mid f_j(x) \leq 0, x \in D \} \text{ or } \min \{ g(x) \mid f_j(x) \leq 0, x \in D \} \]

with \(D \subseteq \mathbb{R}^n \), \(g, f_j : D \rightarrow \mathbb{R}, j = 1, \ldots, m \).

Feasible solution: \(x^* \in D \) with \(f_j(x^*) \leq 0 \), for all \(j \).

Optimal solution: Feasible solution such that

\[g(x^*) = \max \{ g(x) \mid f_j(x) \leq 0, \text{ for all } j, \ x \in D \} . \]

Feasible/optimal solutions

- need not exist,
- need not be unique.
\[
\begin{align*}
\text{max} & \quad c_1 x_1 + \cdots + c_n x_n \\
\text{w.r.t.} & \quad a_{11} x_1 + \cdots + a_{1n} x_n \leq b_1, \\
& \quad \vdots \\
& \quad a_{m1} x_1 + \cdots + a_{mn} x_n \leq b_m, \\
& \quad x_1, \ldots, x_n \in \mathbb{R}.
\end{align*}
\]
Linear optimization

\[
\begin{align*}
\text{max} & \quad c_1 x_1 + \cdots + c_n x_n \\
\text{w.r.t.} & \quad a_{11} x_1 + \cdots + a_{1n} x_n \leq b_1, \\
& \quad \vdots \\
& \quad a_{m1} x_1 + \cdots + a_{mn} x_n \leq b_m, \\
\end{align*}
\]
\[
\quad x_1, \ldots, x_n \in \mathbb{R}.
\]

In matrix notation:

\[
\max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^n \},
\]

with \(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n \).
A. Bockmayr, 26 May 2016
Geometric illustration

Polyhedron

$\Delta P = \{ x \in \mathbb{R}^n | Ax \leq b \} \rightarrow \text{feasible region}$

Linear optimization problem (LP): max

$\{ c^T x | Ax \leq b, x \in \mathbb{R}^n \}$
Geometric illustration

Polyhedron $P = \{ x \in \mathbb{R}^n \mid Ax \leq b \} \mapsto$ feasible region

Linear optimization problem (LP): $\max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^n \}$
Geometric illustration

Polyhedron $P = \{ x \in \mathbb{R}^n | Ax \leq b \} \Rightarrow$ feasible region

Linear optimization problem (LP): max $\{ c^T x | Ax \leq b, x \in \mathbb{R}^n \}$
Polyhedron $P = \{ x \in \mathbb{R}^n \mid Ax \leq b \} \leadsto$ feasible region

Linear optimization problem (LP): $\max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^n \}$
Linear optimization problem

\[
\max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^n \} \quad \text{(LP)}
\]
Linear optimization problem

\[\max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^n \} \]

(SLP)

Simplex-Algorithm (Dantzig 1947)

1. Find a vertex of the polyhedron \(P \).
2. Proceed from vertex to vertex along edges of \(P \) such that the objective function \(g = c^T x \) increases.
3. Either a vertex will be reached that is optimal, or an edge will be chosen which goes off to infinity and along which \(g \) is unbounded.
All known variants of the Simplex algorithm have worst-case exponential running time.
All known variants of the Simplex algorithm have worst-case exponential running time.

In practice, the Simplex algorithm is very efficient.
All known variants of the Simplex algorithm have worst-case exponential running time.

In practice, the Simplex algorithm is very efficient.

There exist polynomial-time algorithms for linear optimization

- Ellipsoid method (Khachiyan 1979)
- Interior point methods (Karmarkar 1984)
Integer linear optimization

- **Linear optimization/programming (LP)** polynomial

 \[
 \max \{ c^T x \mid Ax \leq b, \, x \in \mathbb{R}^n \}
 \]

- **Integer linear optimization (IP)** NP-hard

- **Mixed-Integer linear optimization (MIP)** NP-hard

- **Mixed 0-1 linear optimization** NP-hard
Integer linear optimization

- **Linear optimization/programming (LP)**
 \[
 \max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^n \}
 \]
 polynomial

- **Integer linear optimization (IP)**
 \[
 \max \{ c^T x \mid Ax \leq b, x \in \mathbb{Z}^n \}
 \]
 NP-hard

A. Bockmayr, 26 May 2016
Integer linear optimization

- **Linear optimization/programming (LP)** polynomial
 \[
 \max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^n \}
 \]

- **Integer linear optimization (IP)** NP-hard
 \[
 \max \{ c^T x \mid Ax \leq b, x \in \mathbb{Z}^n \}
 \]

- **Mixed-Integer linear optimization (MIP)** NP-hard
 \[
 \max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^p \times \mathbb{Z}^q \}
 \]
Integer linear optimization

- **Linear optimization/programming (LP)**, polynomial
 \[\max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^n \} \]

- **Integer linear optimization (IP)**, NP-hard
 \[\max \{ c^T x \mid Ax \leq b, x \in \mathbb{Z}^n \} \]

- **Mixed-Integer linear optimization (MIP)**, NP-hard
 \[\max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^p \times \mathbb{Z}^q \} \]

- **Mixed 0-1 linear optimization**, NP-hard
 \[\max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^p \times \{0,1\}^q \} \]
\(P = \{ x \in \mathbb{R}^n \mid Ax \leq b \}, \ A \in \mathbb{Z}^{m \times n}, \ b \in \mathbb{Z}^m \) polyhedron

Integer points in \(P \ \implies \ P \cap \mathbb{Z}^n \)
\(P = \{ x \in \mathbb{R}^n \mid Ax \leq b \}, \ A \in \mathbb{Z}^{m \times n}, \ b \in \mathbb{Z}^m \) polyhedron

\(\triangleright \) Integer points in \(P \leadsto P \cap \mathbb{Z}^n \)
\[P = \{ x \in \mathbb{R}^n \mid Ax \leq b \}, \quad A \in \mathbb{Z}^{m \times n}, \quad b \in \mathbb{Z}^m \text{ polyhedron} \]

\[\text{Integer points in } P \mapsto P \cap \mathbb{Z}^n \]

\[P_I = \text{conv}(P \cap \mathbb{Z}^n) \text{ integer hull} \]
\(P = \{ x \in \mathbb{R}^n \mid Ax \leq b \}, \quad A \in \mathbb{Z}^{m \times n}, \quad b \in \mathbb{Z}^m \) polyhedron

- Integer points in \(P \) \(\leadsto \) \(P \cap \mathbb{Z}^n \)

- \(P_I = \text{conv}(P \cap \mathbb{Z}^n) \) integer hull

- \(P_I \) is a polyhedron: \(P_I = \{ x \in \mathbb{R}^n \mid \tilde{A}x \leq \tilde{b} \}, \quad \tilde{A} \in \mathbb{Z}^{k \times n}, \quad \tilde{b} \in \mathbb{Z}^k \)
$P = \{ x \in \mathbb{R}^n \mid Ax \leq b \}, \quad A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m$ polyhedron

- Integer points in $P \rightsquigarrow P \cap \mathbb{Z}^n$

- $P_I = \text{conv}(P \cap \mathbb{Z}^n)$ integer hull

- P_I is a polyhedron: $P_I = \{ x \in \mathbb{R}^n \mid \tilde{A}x \leq \tilde{b} \}, \tilde{A} \in \mathbb{Z}^{k \times n}, \tilde{b} \in \mathbb{Z}^k$

\[
\max\{ c^T x \mid Ax \leq b, x \in \mathbb{Z}^n \} = \max\{ c^T x \mid \tilde{A}x \leq \tilde{b}, x \in \mathbb{R}^n \}
\]
P_I is very hard to compute \leadsto approximation by cutting planes (Gomory 1958)
P_I is very hard to compute \Rightarrow approximation by cutting planes (Gomory 1958)

- Solve the linear relaxation
 $$\max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^n \}$$
 and find an optimal solution x^\ast.
P_I is very hard to compute \leadsto approximation by cutting planes (Gomory 1958)

▷ Solve the linear relaxation
\[
\max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^n \}
\]
and find an optimal solution x^*.

▷ If $x^* \in \mathbb{Z}^n$, the integer linear program has been solved.
P_I is very hard to compute \leadsto approximation by cutting planes (Gomory 1958)

- Solve the linear relaxation
 \[
 \max\{c^T x \mid Ax \leq b, x \in \mathbb{R}^n\}
 \]
 and find an optimal solution x^*.

- If $x^* \in \mathbb{Z}^n$, the integer linear program has been solved.

- If $x^* \notin \mathbb{Z}^n$, generate a cutting plane
 $a^T x \leq \beta$, which is satisfied by all integer points in P, but which cuts off the non-integer vertex x^*.

P_I is very hard to compute \leadsto approximation by cutting planes (Gomory 1958)

- Solve the linear relaxation
 \[
 \max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^n \}
 \]
 and find an optimal solution x^*.

- If $x^* \in \mathbb{Z}^n$, the integer linear program has been solved.

- If $x^* \notin \mathbb{Z}^n$, generate a cutting plane $a^T x \leq \beta$, which is satisfied by all integer points in P, but which cuts off the non-integer vertex x^*.

- Add the inequality $a^T x \leq \beta$ to the system $Ax \leq b$ and solve the relaxation again.
Chvátal-Gomory cutting plane

Gomory 58, Chvátal 73
Gomory 58, Chvátal 73
Chvátal-Gomory cutting plane

Gomory 58, Chvátal 73

A. Bockmayr, 26 May 2016
Chvátal-Gomory cutting plane

Gomory 58, Chvátal 73
Chvátal-Gomory cutting plane

Gomory 58, Chvátal 73

\[\begin{align*}
Ax & \leq b \\
\mathbf{u}^T Ax & \leq \left\lfloor \mathbf{u}^T b \right\rfloor
\end{align*} \]

if \(\begin{cases}
\mathbf{u} \geq 0 \\
\mathbf{u}^T A \in \mathbb{Z}^n
\end{cases} \)
Branch-and-Bound

Land/Doig 1960

- Divide the set of feasible solutions into subsets ("branch")
- Compute bounds for the objective function on these subsets ("bound") \(\leadsto\) linear relaxation!
- Use these bounds to discard some subsets from further consideration.
Branch-and-Bound

Divide the set of feasible solutions into subsets ("branch")
Compute bounds for the objective function on these subsets ("bound") \leadsto linear relaxation!
Use these bounds to discard some subsets from further consideration.

Basic principle
$S = S^0 \cup S^1$
Local upper bound: $\max\{c^T x \mid x \in S^0\} \leq UB^0$
Global lower bound (feasible solution): $x^* \in S$, with $c^T x^* = LB > UB^0$
$\leadsto x_{opt} \in S^1$.
Grötschel, Padberg, Rinaldi, ... , 1980’s

- Combine branch-and-bound with cutting plane generation.

- Improve upper bounds by tightening the linear relaxation using cutting planes.

- Study the facets of the integer hull P to find strong cutting planes ("polyhedral combinatorics").

- Many results on strong cuts for particular problems (e.g. knapsack, traveling salesman, alignment, ...)

- Strong cuts for general problems: Gomory’s mixed integer cuts, lift-and-project cuts, ...

- Software: CPLEX, Gurobi, SCIP, ...
Branch-and-Cut

Grötschel, Padberg, Rinaldi, . . . , 1980’s

▷ Combine branch-and-bound with cutting plane generation.
▷ Improve upper bounds by tightening the linear relaxation using cutting planes.
Grötschel, Padberg, Rinaldi, . . . , 1980’s

- Combine branch-and-bound with cutting plane generation.
- Improve upper bounds by tightening the linear relaxation using cutting planes.
- Study the facets of the integer hull P_I to find strong cutting planes ("polyhedral combinatorics")
Grötschel, Padberg, Rinaldi, . . . , 1980’s

- Combine branch-and-bound with cutting plane generation.
- Improve upper bounds by tightening the linear relaxation using cutting planes.
- Study the facets of the integer hull P_I to find strong cutting planes (“polyhedral combinatorics”)
- Many results on strong cuts for particular problems (e.g. knapsack, traveling salesman, alignment, . . .)
Branch-and-Cut

Groetschel, Padberg, Rinaldi, . . ., 1980’s

▷ Combine branch-and-bound with cutting plane generation.
▷ Improve upper bounds by tightening the linear relaxation using cutting planes.
▷ Study the facets of the integer hull P_I to find strong cutting planes (“polyhedral combinatorics”)
▷ Many results on strong cuts for particular problems (e.g. knapsack, traveling salesman, alignment, . . .)
▷ Strong cuts for general problems: Gomory’s mixed integer cuts, lift-and-project cuts, . . .
Grötschel, Padberg, Rinaldi, . . . , 1980’s

- Combine branch-and-bound with cutting plane generation.
- Improve upper bounds by tightening the linear relaxation using cutting planes.
- Study the facets of the integer hull P_I to find strong cutting planes ("polyhedral combinatorics")
- Many results on strong cuts for particular problems (e.g. knapsack, traveling salesman, alignment, . . .)
- Strong cuts for general problems: Gomory’s mixed integer cuts, lift-and-project cuts, . . .
- **Software:** CPLEX, Gurobi, SCIP, . . .
Linear optimization
 ▶ Polyhedra
 ▶ Simplex algorithm, interior point methods
Linear optimization
- Polyhedra
- Simplex algorithm, interior point methods

(Mixed-)integer linear optimization
- Integer hull and linear relaxation
- Cutting planes
- Branch-and-bound
- Branch-and-cut

NP-hard

polydivial
Summary

- Linear optimization
 - Polyhedra
 - Simplex algorithm, interior point methods

- (Mixed-)integer linear optimization
 - Integer hull and linear relaxation
 - Cutting planes
 - Branch-and-bound
 - Branch-and-cut

- Many applications in bioinformatics and systems biology
 - Flux balance analysis
 - Elementary flux modes

polynomial

NP-hard

A. Bockmayr, 26 May 2016