On the relation between interaction and state transition graphs

Ling Sun AG MathLife

June 25, 2014

- T. Lorenz's Algorithms
- ASTG checking

2 Current work and results

- Current work
- Application on 3-node MAPK cascade model

3 Future work and so on

Asynchronous State Transition Graph (ASTG)

u: component*x*: state

$$Res(u,x) = \left\{ v \in Pre(u) | \begin{array}{c} \varepsilon(v,u) = + & \wedge & x_v \ge \vartheta(v,u) \\ \varepsilon(v,u) = - & \wedge & x_v < \vartheta(v,u) \end{array} \right\}$$

Freie Universität Berlin 3/18

u: component *x*: state

$$Res(u,x) = \left\{ v \in Pre(u) | \begin{array}{c} \varepsilon(v,u) = + & \wedge & x_v \ge \vartheta(v,u) \\ \varepsilon(v,u) = - & \wedge & x_v < \vartheta(v,u) \end{array} \right\}$$

Model: M = (I, K)

Preliminaries

u: component*x*: state

$$Res(u,x) = \left\{ v \in Pre(u) | \begin{array}{c} \varepsilon(v,u) = + & \wedge & x_v \ge \vartheta(v,u) \\ \varepsilon(v,u) = - & \wedge & x_v < \vartheta(v,u) \end{array} \right\}$$

state	$Res(X_1, \cdot)$	$K(X_1, Res(X_1, \cdot))$
00	$\{X_1\}$	0
01	$\{X_1, X_2\}$	2
10	$\{X_1\}$	0
11	$\{X_1, X_2\}$	2
20	ϕ	0
21	$\{X_2\}$	0

Preliminaries

$$Res(u,x) = \left\{ v \in Pre(u) | \begin{array}{c} \varepsilon(v,u) = + & \wedge & x_v \ge \vartheta(v,u) \\ \varepsilon(v,u) = - & \wedge & x_v < \vartheta(v,u) \end{array} \right\}$$

ASTG T = (X, S)

Extreme state a state $x, \forall u \in V, x_u \in \{0, max_u\}.$

ASTG T = (X, S)

Extreme state a state $x, \forall u \in V, x_u \in \{0, max_u\}.$

a row of states
$$\tau(x^0, u) = (x^0, \dots, x^k),$$

 $x_u^i = x^0 + l\mathbf{e}_u, \forall l \in \{0, \dots, k\}.$

isomorphic *u*-rows

$$(x^0, \dots, x^k), (y^0, \dots, y^k)$$

if $(x_i, x_j) \in S$ iff $(y_i, y_j) \in S, \forall i, j \in \{0, \dots, k\}.$

ASTG T = (X, S)

Extreme state a state $x, \forall u \in V, x_u \in \{0, max_u\}.$

 $u - \mathbf{row}$

a row of states $\tau(x^0, u) = (x^0, ..., x^k),$ $x_u^i = x^0 + l\mathbf{e}_u, \forall l \in \{0, ..., k\}.$

Extreme row. an u-row $\tau(x^0, u)$ with extreme state x^0 and $k = max_u$.

Theorem

For any model M = (I, K), the state transition graph T_M is uniquely determined by IG I and the extremal rows of T_M .[1]

Proposition

ASTG description using extremal rows

Corollary

Let $u, v \in V$, $u \neq v$, and $x \in X$ with $x_v = x_u = 0$. For every $i \leq max_v \tau(x + i\mathbf{e}_v, u)$ with start state $(x + i\mathbf{e}_v)$. Then there are:

- If $(v, u) \notin E$, all rows are isomorphic.
- If $(v, u) \in E$, all rows in $\tau^0, \ldots, \tau^{\vartheta(v, u)-1}$ and $\tau^{\vartheta(v, u)}, \ldots, \tau^{\max_v}$ are isomorphic respectively. [2]

5/18

Model conditions

 $(u, v) \in E$ is **visible**, if $\exists \omega \subseteq Pre\{v\} \setminus u$, $K(v, \omega) \neq K(v, \omega \cup \{u\})$. Eg. (X_2, X_1) $\exists K(X_1, \{X_1\}) \neq K(X_1, \{X_1, X_2\})$ **Visibility Model**

> A model M = (I, K)where $\forall (u, v) \in E$ is visible.

 $(u, v) \in E$ is **observable**, if $\exists \omega \subseteq Pre\{v\} \setminus u$, $K(v, \omega) < K(v, \omega \cup \{u\})$. Eg. (X_2, X_1) $\exists K(X_1, \{X_1\}) < K(X_1, \{X_1, X_2\})$ **Observibility Model** A model M = (I, K)where $\forall (u, v) \in E$ is observable.

A model M satisfies Snoussi-condition $\forall u \in V, \, \forall \zeta \subseteq \omega \subseteq Pre(u),$ $K(u,\zeta) \le K(u,\omega).$

This model is

Snoussi model.

Eg. (X_2, X_1) $K(X_1, \phi) = K(X_1, \{X_1\})$ $K(X_1, \{X_2\}) < K(X_1, \{X_1, X_2\})$ Satisfies Snoussi condition.

Model conditions

Work Review T. Lor

T. Lorenz's Algorithms

T. Lorenz's Algorithms: Visibility Model

ASTG

7/18

T. Lorenz's Algorithms: Observability-Snoussi Model

Observability-Snoussi Model M = (I, K)

A model M = (I, K), with minimal number

ASTG

Inverse engineering: From ASTG \rightarrow Model M(I, K)

- Sometimes, the output *M* can not reproduce the input. Why?
- Multiple edges in the IG corresponding to the input ASTG is not allowed.
- Note: in the corresponding IG, thresholds from one component to others can be the same.(*Different with Thomas' model*)

Multiple Edges X_1, X_2, X are components.

ASTG Checking

Aim The input ASTG should be checked before using T. Lorenz's algorithms.

• Idea: the ASTG which will be the input of T. Lorenz's algorithms, the IG of this ASTG should have no multiple edges.

ASTG Checking

Aim The input ASTG should be checked before using T. Lorenz's algorithms.

• Idea: the ASTG which will be the input of T. Lorenz's algorithms, the IG of this ASTG should have no multiple edges.

Work Review ASTG checking

ASTG Checking

Aim The input ASTG should be checked before using T. Lorenz's algorithms.

• Idea: the ASTG which will be the input of T. Lorenz's algorithms, the IG of this ASTG should have no multiple edges.

- Method: on small scale, enumerate all possible ASTGs and get corresponding models using T. Lorenz's algorithms.
- Analysis.
 - How many IGs share the same attractors?
 - $\bullet~$ The changes on ASTGs $\longleftrightarrow~$ the changes on IGs.

Fig. Experiment process map

Exploring relations between IG and ASTG

- Method: on small scale, enumerate all possible ASTGs and get corresponding models using T. Lorenz's algorithms.
- Analysis.
 - How many IGs share the same attractors?
 - $\bullet~$ The changes on ASTGs $\longleftrightarrow~$ the changes on IGs.

Fig. Experiment process map

Application on 3-node MAPK cascade model

- A reduced MAPK model from Kirsten. ;)
- Set input RTK to 1, the corresponding ASTG is in below on the right.

ASTG: Orange path is the cyclic attractor. Dashed arrows mean in the back of the cube. All directed arrows are transitions.

Application on 3-node MAPK cascade model

- A reduced MAPK model from Kirsten. ;)
- Set input RTK to 1, the corresponding ASTG is in below on the right.
- Experiment: how many IGs share the same cyclic attractors?
 - Enumerate all possible transitions on $X := \{0, 1\}^3$ which keeps the cyclic cycle. ($2^6 = 64$)
 - Use T. Lorenz's Algorithm: Visibility Model, get all visible models.
 - See the different IGs.

ASTG: Orange path is the cyclic attractor. Dashed arrows mean in the back of the cube. All directed arrows are transitions.

Current work and results

Results

• Different ASTG & corresponding IG.

14/18

Current work and results App

Results

• Different ASTG & corresponding IG.

• Different ASTG & corresponding IG.

14/18

• Different ASTG & corresponding IG.

• Eight kinds of interaction graphs.

15/18

Analysis

• Eg. To understand why $Merk \rightarrow Mek$ and Erk - - - |Mek.

Analysis

• Eg. To understand why *Merk* \rightarrow *Mek* and *Erk* - - - |Mek.

Analysis

• Eg. To understand why $Merk \rightarrow Mek$ and Erk - - - |Mek.

- Other small network options.
 - Firdevs' Signaling models (4 components).
 - GI/S cell cycle regulation(2 components).
 - Bacteriophage λ infection (4 components).
 - Neural development in Rat (CNS, 4 components).
 - Circadian clock (from 2 to 5 components). The last four, from Adam.
- Open question. What kind of graph is a real ASTG? What kind of ASTG doesn't carriy any IG?

Thanks for your attention!

Questions are warmly welcome!

Thanks for all of our group members in AG MathLife and AG Discrete BioMath. Also thanks to CSC for the support.

