Polynomial reductions

- A polynomial reduction of L₁ ⊆ Σ₁^{*} to L₂ ⊆ Σ₂^{*} is a polynomially computable function f : Σ₁^{*} → Σ₂^{*} with w ∈ L₁ ⇔ f(w) ∈ L₂.
- **Proposition.** If L₁ is polynomially reducible to L₂, then
 - 1. $L_1 \in P$ if $L_2 \in P$ and $L_1 \in NP$ if $L_2 \in NP$
 - 2. $L_2 \notin P$ if $L_1 \notin P$ and $L_2 \notin NP$ if $L_1 \notin NP$.
- L₁ and L₂ are *polynomially equivalent* if they are polynomially reducible to each other.

NP-complete problems

- A language $L \subseteq \Sigma^*$ is *NP-complete* if
 - 1. *L* ∈ *NP*
 - 2. Any $L' \in NP$ is polynomially reducible to L.
- **Proposition.** If *L* is *NP*-complete and $L \in P$, then P = NP.
- Corollary. If L is NP-complete and $P \neq NP$, then there exists no polynomial algorithm for L.

Structure of the class NP

Fundamental open problem: $P \neq NP$?

Proving NP-completeness

- **Theorem** (Cook 1971). SAT is *NP*-complete.
- **Proposition.** *L* is *NP*-complete if
 - 1. $L \in NP$
 - 2. there exists an *NP*-complete problem L' that is polynomially reducible to *L*.
- Example: INDEPENDENT SET

Instance: Graph G = (V, E) and $k \in \mathbb{N}, k \le |V|$. Question: Is there a subset $V' \subseteq V$ such that $|V'| \ge k$ and no two vertices in V' are joined by an edge in E?

Reducing 3SAT to INDEPENDENT SET

- Let *F* be a conjunction of *n* clauses of length 3, i.e., a disjunction of 3 propositional variables or their negation.
- Construct a graph G with 3n vertices that correspond to the variables in F.
- For any clause in *F*, connect by three edges the corresponding vertices in *G*.
- Connect all pairs of vertices corresponding to a variable x and its negation $\neg x$.
- F is satisfiable if and only if G contains an independent set of size n.

NP-hard problems

- Decision problem: solution is either yes or no
- Example: Traveling salesman decision problem: Given a network of cities, distances, and a number B, does there exist a tour with length ≤ B?
- Search problem: find an object with required properties
- Example: Traveling salesman optimization problem: Given a network of cities and distances, find a shortest tour.
- Decision problem NP-complete \Rightarrow search problem NP-hard
- NP-hard problems: at least as hard as NP-complete problems

NP-hard problems in bioinformatics

Sperschneider 08

- Multiple alignment
- Shortest common superstring
- Protein threading
- Pseudoknot prediction
- Bi-Clustering
- ...

÷

Further complexity classes

coNP:	Problems whose complement is in NP
PSPACE:	Problems solvable in polynomial space
EXPTIME:	Problems solvable in exponential time

Literature

- J. E. Hopcroft and J. D. Ullman: Introduction to automata theory, languages and computation. Addison-Wesley, 1979
- M. R. Garey and D. S. Johnson: Computers and intractability. A guide to the theory of NP-completeness. Freeman, 1979
- C. H. Papadimitriou: Computational complexity. Addison-Wesley, 1994
- S. Arora and B. Barak: Computational complexity a modern approach. Camdridge Univ. Press, 2009
- V. Sperschneider: Bioinformatics. Springer, 2008