Recursive languages

• A language $L \subseteq \Sigma^*$ is *recursively enumerable* if L = L(M), for some Turing machine M.

$$w \longrightarrow \boxed{\mathsf{M}} \longrightarrow \left\{ egin{array}{ll} \mathsf{yes}, & \mathsf{if} \ w \in L \\ \mathsf{no}, & \mathsf{if} \ w
ot\in L \\ M \ \mathsf{does} \ \mathsf{not} \ \mathsf{halt}, & \mathsf{if} \ w
ot\in L \\ \end{array} \right.$$

• A language $L \subseteq \Sigma^*$ is *recursive* if L = L(M) for some Turing machine M that halts on all inputs $w \in \Sigma^*$.

$$w \longrightarrow \boxed{M} \longrightarrow \begin{cases} \text{yes,} & \text{if } w \in L \\ \text{no,} & \text{if } w \notin L \end{cases}$$

• **Lemma.** *L* is recursive iff both *L* and $\overline{L} = \Sigma^* \setminus L$ are recursively enumerable.

Enumerating languages

- An *enumerator* is a Turing machine *M* with extra output tape *T*, where symbols, once written, are never changed.
- M writes to T words from Σ*, separated by \$.
- Let $G(M) = \{ w \in \Sigma^* \mid w \text{ is written to } T \}$.

Some results

- **Lemma.** For any finite alphabet Σ , there exists a Turing machine that generates the words $w \in \Sigma^*$ in canonical ordering (i.e., $w \prec w' \Leftrightarrow |w| < |w|$ or |w| = |w| and $w \prec_{lex} w'$).
- **Lemma.** There exists a Turing machine that generates all pairs of natural numbers (in binary encoding). *Proof:* Use the ordering (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...
- **Proposition.** L is recursively enumerable iff L = G(M), for some Turing machine M.

Computing functions

- Unary encoding of natural numbers: $i \in \mathbb{N} \mapsto \underbrace{|| \dots |}_{i \text{ times}} = |^i$ (binary encoding would also be possible)
- *M* computes $f: \mathbb{N}^k \to \mathbb{N}$ with $f(i_1, ..., i_k) = m$:
 - Start: $|^{i_1} 0|^{i_2} 0 \dots |^{i_k}$ - End: $|^m$
- f partially recursive:

$$i_1, \dots, i_k \longrightarrow \boxed{\mathsf{M}} \longrightarrow \left\{ \begin{array}{l} \text{halts with } f(i_1, \dots, i_k) = m, \\ \text{does not halt, i.e., } f \text{ undefined.} \end{array} \right.$$

• f recursive:

$$i_1, \dots, i_k \longrightarrow \boxed{\mathbf{M}} \longrightarrow \text{halts with } f(i_1, \dots, i_k) = m.$$

Turing machines codes

May assume

$$M = (Q, \{0, 1\}, \{0, 1, \#\}, \delta, q_1, \#, \{q_2\})$$

Unary encoding

$$0 \mapsto 0, 1 \mapsto 00, \# \mapsto 000, L \mapsto 0, R \mapsto 00$$

• $\delta(q_i, X) = (q_i, Y, R)$ encoded by

$$0^{i}1\underbrace{0...0}_{X}10^{j}1\underbrace{0...0}_{Y}1\underbrace{0...0}_{B}$$

• δ encoded by

• Encoding of Turing machine M denoted by $\langle M \rangle$.

Numbering of Turing machines

- Lemma. There exists a Turing machine that generates the natural numbers in binary encoding.
- Lemma. The language of Turing machine codes is recursive.
- **Proposition.** There exists a Turing machine *Gen* that generates the binary encodings of all Turing machines.
- **Theorem.** There exist a bijection between the set of natural numbers, Turing machine codes and Turing machines.

Diagonalization

- Let w_i be the *i*-th word in $\{0,1\}^*$ and M_i the *j*-th Turing machine.
- Table T with $t_{ij} = \begin{cases} 1, & \text{if } w_i \in L(M_j) \\ 0, & \text{if } w_i \notin L(M_j) \end{cases}$

- Diagonal language $L_d = \{ w_i \in \{0,1\}^* \mid w_i \notin L(M_i) \}.$
- **Theorem.** L_d is not recursively enumerable.
- *Proof:* Suppose $L_d = L(M_k)$, for some $k \in \mathbb{N}$. Then

$$w_k \in L_d \Leftrightarrow w_k \not\in L(M_k)$$
,

contradicting $L_d = L(M_k)$.

Universal language

- $\langle M, w \rangle$: encoding $\langle M \rangle$ of M concatenated with $w \in \{0, 1\}^*$.
- Universal language

$$L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$$

- **Theorem.** L_u is recursively enumerable.
- A Turing machine *U* accepting *L_u* is called *universal Turing machine*.
- **Theorem** (Turing 1936). L_u is not recursive. *Proof:* Assume L_u is recursive and show that this wouldy imply \overline{L}_d (and thus L_d) is recursive.

Decision problems

- Decision problems are problems with answer either yes or no.
- Associate with a language $L \subseteq \Sigma^*$ the decision problem D_L

$$\label{eq:local_potential} \begin{split} & \text{Input: } w \in \Sigma^* \\ & \text{Output: } \left\{ \begin{array}{ll} \text{yes,} & \text{if } w \in L \\ \text{no,} & \text{if } w \not \in L \end{array} \right. \end{split}$$

and vice versa.

- ullet D_L is decidable (resp. semi-decidable) if L is recursive (resp. recursively enumerable).
- *D_L* is *undecidable* if *L* is not recursive.

Reductions

- A many-one reduction of $L_1 \subseteq \Sigma_1^*$ to $L_2 \subseteq \Sigma_2^*$ is a computable function $f : \Sigma_1^* \to \Sigma_2^*$ with $w \in L_1 \Leftrightarrow f(w) \in L_2$.
- **Proposition.** If L_1 is many-one reducible to L_2 , then
 - 1. L_1 is decidable if L_2 is decidable.
 - 2. L_2 is undecidable if L_1 is undecidable.

Post's correspondence problem

Given pairs of words

$$(v_1, w_1), (v_2, w_2), \dots, (v_k, w_k)$$

over an alphabet Σ , does there exist a sequence of integers $i_1, \dots, i_m, m \geq 1$, such that

$$V_{i_1}, \ldots, V_{i_m} = W_{i_1}, \ldots, W_{i_m}.$$

• Example

$$\begin{array}{c|cccc}
i & v_i & w_i \\
\hline
1 & 1 & 111 \\
2 & 10111 & 10 \\
3 & 10 & 0
\end{array}
\Rightarrow v_2v_1v_1v_3 = w_2w_1w_1w_3 = 1011111110$$

• Theorem (Post 1946). Post's correspondence problem is undecidable.