Recursive languages

- A language $L \subseteq \Sigma^{*}$ is recursively enumerable if $L=L(M)$, for some Turing machine M.

$$
w \longrightarrow \mathrm{M} \longrightarrow \begin{cases}\text { yes, } & \text { if } w \in L \\ \text { no, }, & \text { if } w \notin L \\ M \text { does not halt, } & \text { if } w \notin L\end{cases}
$$

- A language $L \subseteq \Sigma^{*}$ is recursive if $L=L(M)$ for some Turing machine M that halts on all inputs $w \in \Sigma^{*}$.

$$
w \longrightarrow \mathrm{M} \longrightarrow \begin{cases}\text { yes, } & \text { if } w \in L \\ \text { no, } & \text { if } w \notin L\end{cases}
$$

- Lemma. L is recursive iff both L and $\bar{L}=\Sigma^{*} \backslash L$ are recursively enumerable.

Enumerating languages

- An enumerator is a Turing machine M with extra output tape T, where symbols, once written, are never changed.
- M writes to T words from Σ^{*}, separated by $\$$.
- Let $G(M)=\left\{w \in \Sigma^{*} \mid w\right.$ is written to $\left.T\right\}$.

Some results

- Lemma. For any finite alphabet Σ, there exists a Turing machine that generates the words $w \in \Sigma^{*}$ in canonical ordering (i.e., $w \prec w^{\prime} \Leftrightarrow|w|<|w|$ or $|w|=|w|$ and $w \prec_{\text {lex }} w^{\prime}$).
- Lemma. There exists a Turing machine that generates all pairs of natural numbers (in binary encoding). Proof: Use the ordering (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), \ldots
- Proposition. L is recursively enumerable iff $L=G(M)$, for some Turing machine M.

Computing functions

- Unary encoding of natural numbers: $i \in \mathbb{N} \mapsto \underbrace{\|\ldots\|}_{i \text { times }}=\left.\right|^{i}$ (binary encoding would also be possible)
- M computes $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ with $f\left(i_{1}, \ldots, i_{k}\right)=m$:
- Start: $\left.\left|{ }^{i} 0\right|^{i_{2}} 0 \ldots\right|^{i_{k}}$
- End:| ${ }^{m}$
- f partially recursive:

$$
i_{1}, \ldots, i_{k} \longrightarrow \mathrm{M} \longrightarrow\left\{\begin{array}{l}
\text { halts with } f\left(i_{1}, \ldots, i_{k}\right)=m \\
\text { does not halt, i.e., } f \text { undefined. }
\end{array}\right.
$$

- f recursive:

$$
i_{1}, \ldots, i_{k} \longrightarrow \mathrm{M} \longrightarrow \text { halts with } f\left(i_{1}, \ldots, i_{k}\right)=m
$$

Turing machines codes

- May assume

$$
M=\left(Q,\{0,1\},\{0,1, \#\}, \delta, q_{1}, \#,\left\{q_{2}\right\}\right)
$$

- Unary encoding

$$
0 \mapsto 0,1 \mapsto 00, \# \mapsto 000, L \mapsto 0, R \mapsto 00
$$

- $\delta\left(q_{i}, X\right)=\left(q_{j}, Y, R\right)$ encoded by

- δ encoded by

111 code $_{1} 11$ code $_{2} 11 \ldots 11$ code $_{r} 111$

- Encoding of Turing machine M denoted by $\langle M\rangle$.

Numbering of Turing machines

- Lemma. There exists a Turing machine that generates the natural numbers in binary encoding.
- Lemma. The language of Turing machine codes is recursive.
- Proposition. There exists a Turing machine Gen that generates the binary encodings of all Turing machines.
- Theorem. There exist a bijection between the set of natural numbers, Turing machine codes and Turing machines.

$$
\begin{aligned}
M \longrightarrow \begin{array}{c}
\text { Gen } \\
\langle M\rangle
\end{array} & \longrightarrow \begin{array}{c}
\text { Equality test } \\
+ \text { counter }
\end{array}
\end{aligned} \longrightarrow \text { number } n
$$

- Let w_{i} be the i-th word in $\{0,1\}^{*}$ and M_{j} the j-th Turing machine.
- Table T with $t_{i j}= \begin{cases}1, & \text { if } w_{i} \in L\left(M_{j}\right) \\ 0, & \text { if } w_{i} \notin L\left(M_{j}\right)\end{cases}$

$j \longrightarrow$					
	1	2	3	4	...
1	0	1	1	0	\ldots
$i 2$	1	1	0	1	\ldots
$\downarrow 3$	0	0	1	0	...
:	:		\vdots	\vdots	

- Diagonal language $L_{d}=\left\{w_{i} \in\{0,1\}^{*} \mid w_{i} \notin L\left(M_{i}\right)\right\}$.
- Theorem. L_{d} is not recursively enumerable.
- Proof: Suppose $L_{d}=L\left(M_{k}\right)$, for some $k \in \mathbb{N}$. Then

$$
w_{k} \in L_{d} \Leftrightarrow w_{k} \notin L\left(M_{k}\right)
$$

contradicting $L_{d}=L\left(M_{k}\right)$.

Universal language

- $\langle M, w\rangle$: encoding $\langle M\rangle$ of M concatenated with $w \in\{0,1\}^{*}$.
- Universal language

$$
L_{u}=\{\langle M, w\rangle \mid M \text { accepts } w\}
$$

- Theorem. L_{u} is recursively enumerable.
- A Turing machine U accepting L_{u} is called universal Turing machine.
- Theorem (Turing 1936). L_{u} is not recursive.

Proof: Assume L_{u} is recursive and show that this wouldy imply \bar{L}_{d} (and thus L_{d}) is recursive.

Decision problems

- Decision problems are problems with answer either yes or no.
- Associate with a language $L \subseteq \Sigma^{*}$ the decision problem D_{L}

Input: $w \in \Sigma^{*}$
Output: $\begin{cases}\text { yes, } & \text { if } w \in L \\ \text { no, } & \text { if } w \notin L\end{cases}$
and vice versa.

- D_{L} is decidable (resp. semi-decidable) if L is recursive (resp. recursively enumerable).
- D_{L} is undecidable if L is not recursive.

Reductions

- A many-one reduction of $L_{1} \subseteq \Sigma_{1}^{*}$ to $L_{2} \subseteq \Sigma_{2}^{*}$ is a computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ with $w \in L_{1} \Leftrightarrow f(w) \in L_{2}$.
- Proposition. If L_{1} is many-one reducible to L_{2}, then

1. L_{1} is decidable if L_{2} is decidable.
2. L_{2} is undecidable if L_{1} is undecidable.

Post's correspondence problem

- Given pairs of words

$$
\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right), \ldots,\left(v_{k}, w_{k}\right)
$$

over an alphabet Σ, does there exist a sequence of integers $i_{1}, \ldots, i_{m}, m \geq 1$, such that

$$
v_{i_{1}}, \ldots, v_{i_{m}}=w_{i_{1}}, \ldots, w_{i_{m}} .
$$

- Example

i	v_{i}	w_{i}
1	1	111
2	10111	10
3	10	0

- Theorem (Post 1946). Post's correspondence problem is undecidable.

