# **Computability and Complexity Theory**

# Computability and complexity

- Computability theory
  - What is an algorithm ?
  - What problems can be solved on a computer ?
  - What is a computable function ?
  - Solvable vs. unsolvable problems (decidability)
- Complexity theory
  - How much time and memory is needed to solve a problem ?
  - Tractable vs. intractable problems

## What is a computable function ?

• Non-trivial question ~ various formalizations, e.g.

| <ul> <li>General recursive functions</li> </ul> | Gödel/Herbrand/Kleene 1936 |
|-------------------------------------------------|----------------------------|
| – λ-calculus                                    | Church 1936                |
| – $\mu$ -recursive functions                    | Gödel/Kleene 1936          |
| <ul> <li>Turing machines</li> </ul>             | Turing 1936                |
| <ul> <li>Post systems</li> </ul>                | Post 1943                  |
| <ul> <li>Markov algorithms</li> </ul>           | Markov 1951                |
| <ul> <li>Unlimited register machines</li> </ul> | Shepherdson-Sturgis 1963   |
|                                                 |                            |

. . .

• All these approaches have turned out to be equivalent.

# **Church-Turing thesis**

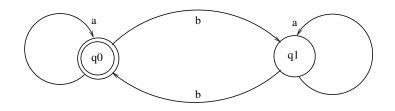
The class of intuitively computable functions is equal to the class of Turing computable functions.

## Finite automata

Finite automaton:  $M = (Q, \Sigma, \delta, q_0, F)$  with

- Q finite set of states
- $\Sigma$  finite input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$  transition function
- $q_0 \in Q$  initial state
- $F \subseteq Q$  set of *final states*





 $M^0 = (Q, \Sigma, \delta, q_0, F)$  with

- $Q = \{q_0, q_1\}, \ \Sigma = \{a, b\}, \ F = \{q_0\}$
- $\delta(q_0, a) = q_0$ ,  $\delta(q_0, b) = q_1$ ,  $\delta(q_1, a) = q_1$ ,  $\delta(q_1, b) = q_0$

### **Recognizing languages**

- Denote by  $\Sigma^*$  the set of finite words (strings) over  $\Sigma$ , by  $\varepsilon \in \Sigma^*$  the empty word.
- Define  $\overline{\delta}: Q \times \Sigma^* \to Q$  by

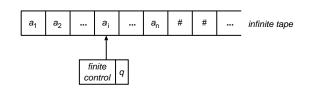
$$\overline{\delta}(q, \varepsilon) = q$$
 and  
 $\overline{\delta}(q, wa) = \delta(\overline{\delta}(q, w), a)$ , for all  $w \in \Sigma^*, a \in \Sigma$ .

• Language accepted by M:

$$L(M) = \{ w \in \Sigma^* \mid \overline{\delta}(q_0, w) = p, \text{ for some } p \in F \}$$

- *Example:*  $L(M^0)$  is the set of all strings over  $\Sigma = \{a, b\}$  with an even number of *b*'s.
- Gene regulatory networks can be modeled as networks of finite automata.

#### **Turing machine**



Depending on the symbol scanned and the state of the control, in each step the machine

- changes state,
- prints a symbol on the cell scanned, replacing what is written there,
- moves the head left or right one cell.

#### **Formal definition**

- $M = (Q, \Sigma, \Gamma, \delta, q_0, \#, F)$
- Q is the finite set of states.
- Γ is the finite alphabet of allowable *tape symbols*.
- $\# \in \Gamma$  is the *blank*.
- $\Sigma \subset \Gamma \setminus \{\#\}$  is the set of *input symbols*.
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$  is the *next move function* (possibly undefined for some arguments)
- $q_0 \in Q$  is the *start state*.
- $F \subseteq Q$  is the set of *final (accepting) states.*

#### **Recognizing languages**

- Instantaneous description:  $\alpha_l q \alpha_r$ , where
  - q is the current state,
  - $\alpha_l \alpha_r \in \Gamma^*$  is the string on the tape up to the rightmost nonblank symbol,
  - the head is scanning the leftmost symbol of  $\alpha_r$ .
- *Move:*  $\alpha_l q \alpha_r \vdash \alpha'_l q' \alpha'_r$ , by one step of the machine.
- Language accepted by M

$$L(M) = \{ w \in \Sigma^* \mid q_0 w \vdash^* \alpha_l q \alpha_r, \text{ for some } q \in F \text{ and } \alpha_l, \alpha_r \in \Gamma^* \}$$

• *M* may not halt, if *w* is not accepted.

#### Example

• Turing machine

$$M = (\{q_0, \dots, q_4\}, \{0, 1\}, \{0, 1, X, Y, \#\}, \delta, q_0, \#, \{q_4\})$$

accepting the language  $L = \{0^n 1^n \mid n \ge 1\}$ 

| δ     | 0                              | 1             | Х             | Y             | #              |
|-------|--------------------------------|---------------|---------------|---------------|----------------|
| $q_0$ | $(q_1, X, R)$                  | _             | —             | $(q_3, Y, R)$ | _              |
| $q_1$ | $(q_1, 0, R)$                  | $(q_2, Y, L)$ | _             | $(q_1, Y, R)$ | _              |
|       | (q <sub>2</sub> ,0, <i>L</i> ) | —             | $(q_0, X, R)$ | $(q_2, Y, L)$ | _              |
| $q_3$ | _                              | _             | _             | $(q_3, Y, R)$ | $(q_4, \#, R)$ |
| $q_4$ | _                              | _             | _             | _             | _              |

• Example computation

| <i>q</i> 00011             | $\vdash$ | <i>Xq</i> 1011                      | $\vdash$ | X0q <sub>1</sub> 11 | $\vdash$ | <i>Xq</i> 20 <i>Y</i> 1 | $\vdash$ |
|----------------------------|----------|-------------------------------------|----------|---------------------|----------|-------------------------|----------|
| <i>q</i> <sub>2</sub> X0Y1 | $\vdash$ | <i>Xq</i> <sub>0</sub> 0 <i>Y</i> 1 | $\vdash$ | <i>XXq</i> 1 Y1     | $\vdash$ | XXYq <sub>1</sub> 1     | $\vdash$ |
| XXq <sub>2</sub> YY        | $\vdash$ | Xq <sub>2</sub> XYY                 | $\vdash$ | XXq <sub>0</sub> YY | $\vdash$ | XXYq <sub>3</sub> Y     | $\vdash$ |
| XXYYq <sub>3</sub>         | $\vdash$ | XXYY#q <sub>4</sub>                 |          |                     |          |                         |          |