1 Exercise

Consider the gene interaction network \mathcal{I}:

Assume that upon activation, X_1 first acts on X_2, and then on itself.

1. What is the informal meaning of the two CTL formulas $EF(X_1 = 2 \land X_2 = 1)$ resp. $AF(X_1 = 2 \land X_2 = 1)$?

2. For each of these two formulas, give the set of states in \mathcal{T} for which it is true.

3. For each of the CTL formulas $AF(X_2 = 1)$, $AG(X_2 = 1)$, and $EX(AG(X_2 = 1))$, give the set of states in \mathcal{T} for which it is true.
2 Exercise

1. Given the state transition graph G

use the labeling algorithm to determine all states of G in which the formula

- $AF(E[p U q] \land EXp)$
- $AF EG (p \land q)$

is true.

2. Represent the following properties by CTL formula:

- q is never true after p.
- p is never true between q and r.
3 Exercise

Which of the specifications below convey the mathematical meaning of the CTL formula $AG (p \rightarrow A[q U r])$?

1. Any reachable state in which p is true has a path from it on which r is eventually true, and until then q is true.

2. If p is true in every reachable state, then there is a path along which q is continuously true, until r becomes true.

3. If p is true in every reachable state, then for any path along which q is continuously true, r becomes true.

4. For any reachable state in which p is true, then, on any path from that state, q is continuously true until r becomes true, and r is guaranteed to become true.

5. If p is true in every reachable state, then on every path there is a state at which r is true, and q is true continuously until then.

4 Exercise

Which of the following pairs of CTL formulas are equivalent ?

1. $EF p$ and $EG p$

2. $EF p \lor EF q$ and $EF (p \lor q)$

3. $AF p \lor AF q$ and $AF (p \lor q)$

4. $AF p$ and $A[p U true]$

5. $EF \neg p$ and $\neg AF p$

5 Exercise

Consider the transition system (S, \rightarrow, L) where,

- the set of states $S = \{s_0, s_1, s_2, s_3\}$,
- the state transitions are $(s_0, s_0), (s_0, s_1), (s_0, s_3), (s_1, s_2), (s_2, s_1), (s_3, s_2)$,
- the labeling function is given by $L(s_0) = \{r\}, L(s_1) = \{p, r\}, L(s_2) = \{q, r\}$ and $L(s_3) = \{p, q\}$.
Which of the CTL formulas below are satisfied in state s_0?

1. $AF(q \land r)$
2. $AG(p \rightarrow AF(p \land r))$
3. $A[rUq]$
4. $AG(p \rightarrow AG(p \lor q))$
5. $AG EF\neg r$