Constraint-based Modeling of Metabolic Networks

Alexander Bockmayr
Freie Universität Berlin
DFG Research Center Matheon
Mathematics for key technologies

Network Analysis, FU Berlin, SS14

Mathematical representation

Algebraic description

- Stoichiometric matrix
 - Rows \(\rightarrow \) internal metabolites \(i = 1, \ldots, m \)
 - Columns \(\rightarrow \) internal and external reactions \(j = 1, \ldots, n \)
 - \(S_{ij} \): stoichiometric coefficient of reactant \(i \) in reaction \(j \)
- Set of irreversible reactions
- Metabolic model

\[M = (S, \text{Irr}) \]
1. Kinetic modeling

- Metabolites i and reactions j
- $C_i(t)$: metabolite concentrations at time t
- $v_j = v_j(C, k)$: reaction rates, depending on kinetic law and kinetic parameters k
- S_{ij}: stoichiometric coefficient

$$\frac{dC_i}{dt} = \sum_{j=1}^{n} S_{ij} v_j \quad \text{or} \quad \frac{dC}{dt} = S \cdot v(C, k)$$

- System of ordinary differential equations (ODEs)

Example

$$\begin{pmatrix} \frac{dC_1}{dt} \\ \frac{dC_2}{dt} \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} v_1(C, k) \\ v_2(C, k) \\ v_3(C, k) \end{pmatrix}$$

$v_1(C, k) = \frac{v_{m1}}{1 + (C_2/k_1)^p}$
$v_2(C, k) = v_{m2} \cdot C_1/(k_1 + C_1)$
$v_3(C, k) = v_{m3} \cdot C_2/(k_2 + C_2)$

Which kinetic laws?
Which kinetic parameters?

2. Constraint-based modeling

- Steady-state assumption:
 Assume metabolite concentrations C_i and reaction rates v_j are constant \Rightarrow flux vector $v \in \mathbb{R}^n$
- Stoichiometric constraints (mass balance):
 $$\sum_{j=1}^{n} S_{ij} v_j = 0, \text{ for all } i = 1, \ldots, m$$
- Thermodynamics constraints (reaction directionality):
 $$v_j \geq 0, \text{ if } j \text{ is irreversible}$$
 \Rightarrow system of linear equations and inequalities in \mathbb{R}^n

Steady-state flux cone

Set of all possible steady-state flux distributions

$$C = \{ v \in \mathbb{R}^n | Sv = 0, v_i \geq 0, i \in \text{Irr} \}$$

\Rightarrow polyhedral cone
3. Flux balance analysis (FBA)

- Assume cellular behavior is determined by a certain biological objective.
- Determine a corresponding “best” flux distribution.
- Use mathematical optimization to predict phenotype.
- Simplest case: Linear programming (LP)
 \[
 \text{max} \{c^T x \mid Ax \leq b, x \in \mathbb{R}^n\}
 \]
- Flux balance problem (FBA)
 \[
 \text{max} \{c^T v \mid Sv = 0, l \leq v \leq u\} \quad \text{(FBA)}
 \]

4. Flux variability analysis (FVA)

- Optimal solutions to FBA problems need not be unique.
- Enumerating all optimal solutions is computationally expensive.
- Alternative: Analyse flux variability
 \[
 z_{\text{opt}} = \max \{z = c^T v \mid Sv = 0, l \leq v \leq u\} \quad \text{(FBA)}
 \]
 For all \(j = 1, \ldots, n\):
 \[
 \max \{\pm v_j \mid Sv = 0, l \leq v \leq u, c^T v = z_{\text{opt}}\} \quad \text{(FVA)}
 \]

5. Flux coupling analysis (FCA)

- C = \{v \mid Sv = 0, v_k \geq 0, k \in \mathbb{N}\} flux cone
- A reaction \(i\) is blocked if \(v_i = 0\), for all \(v \in C\).
- Let \(i\) and \(j\) be two unblocked reactions.
 - \(i\) is directionally coupled to \(j\), \(i \supseteq 0 j\), if for all \(v \in C\), \(v_i = 0\) implies \(v_j = 0\).
 - \(i\) and \(j\) are partially coupled, \(i \leftrightarrow 0 j\), if for all \(v \in C\), \(v_i = 0\) is equivalent to \(v_j = 0\).
 - \(i\) and \(j\) are fully coupled, \(i \sim^\lambda j\), if there exists \(\lambda \in \mathbb{R} \setminus \{0\}\) such that for all \(v \in C\), \(v_j = \lambda v_i\).
 - \(i \sim^\lambda j\) implies \(i \leftrightarrow^0 j\), which is equivalent to \(i \equiv 0 j\) and \(j \equiv 0 i\).
Example

LP-based flux coupling analysis

- Reaction i is blocked iff
 \[\max \{ \pm v_i | Sv = 0, v_k \geq 0, k \in lrr \} = 0 \]

- Two unblocked reactions i and j are directionally coupled, i.e., $i \rightarrow j$ iff
 \[\max \{ \pm v_j | Sv = 0, v_k \geq 0, k \in lrr, v_i = 0 \} = 0 \]

- $O(n^2)$ linear programming problems

Fast Flux Coupling Calculation F2C2

Larhlimi/David/Selbig/Bockmayr 12

<table>
<thead>
<tr>
<th>Network</th>
<th>FFCA</th>
<th>F2C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. barkeri, iAF692</td>
<td>30197</td>
<td>774</td>
</tr>
<tr>
<td>M. tuberculosis, iNJ661</td>
<td>556504</td>
<td>1504</td>
</tr>
<tr>
<td>E. coli, iJR904</td>
<td>655437</td>
<td>1580</td>
</tr>
<tr>
<td>E. coli, iAF1260</td>
<td>425678</td>
<td>3309</td>
</tr>
<tr>
<td>E. coli, iJO1366</td>
<td>4877262</td>
<td>3952</td>
</tr>
<tr>
<td>H. sapiens, Recon1</td>
<td>4566304</td>
<td>3903</td>
</tr>
</tbody>
</table>