Dynamic optimization of metabolic networks coupled with gene expression

Alexander Bockmayr
Freie Universität Berlin

Joint work with Steffen Waldherr and Diego A. Oyarzún

Metabolic networks, FU Berlin, SS 2015

Cellular metabolism

Metabolism and enzyme production

\[
\begin{align*}
Y & \xleftarrow{V_y} X, \\
X & \xrightarrow{V_x} \bar{X}, \\
X & \xrightarrow{V_p} P
\end{align*}
\]

▷ Molecular species
 ▷ Extracellular nutrients and/or waste \(Y \)
 ▷ Intracellular metabolites \(X \)
 ▷ Macromolecules/enzymes \(P \)

▷ Reaction fluxes
 ▷ Exchange reactions \(V_y \)
 ▷ Internal metabolic reactions \(V_x \)
 ▷ Biomass reactions \(V_p \)

▷ Stoichiometric matrices \(S_j^i \) (species \(i \), reactions \(j \))

Dynamic model

▷ Mass balance

\[
\begin{align*}
\dot{Y} &= -S^y_y V_y \\
\dot{P} &= S^p_p V_p \\
\dot{X} &= S^x_y V_y + S^x_x V_x - S^x_p V_p
\end{align*}
\]

▷ Macromolecule production is slow: small \(\varepsilon \)

▷ Macromolecules are made from many components: large \(\alpha \)

\[
\begin{align*}
\dot{Y} &= -S^y_y V_y \\
\dot{P} &= \varepsilon S^p_p V_p \\
\dot{X} &= S^x_y V_y + S^x_x V_x - \varepsilon \alpha S^x_p V_p
\end{align*}
\]
Quasi steady state approximation

- Time-scale separation (using Tikhonov’s theorem)
 \[\dot{Y} = -S^T_y V_y, \]
 \[\dot{P} = \varepsilon S^T_p V_p, \]
 \[0 = S^T_y V_y + S^T_x V_x - \alpha \varepsilon S^T_p V_p. \]

- Exchange reactions and biomass production coupled via quasi steady-state constraint for intracellular metabolism.

- Model reduction

Tikhonov’s theorem

\[\dot{z} = f(x, z, \varepsilon), \]
\[\dot{x} = g(x, z, \varepsilon), \]
\[(z(0), x(0)) = (z_0, x_0), \]

with \(f, g \) sufficiently smooth, under the following hypotheses:

(H1) There exists a unique solution \(x = g(z) \), sufficiently smooth, of \(g(x, z, 0) = 0 \); the matrix \(\frac{\partial g}{\partial x}(g(z), z, 0) \) has all eigenvalues with strictly negative real part;

(H2) The reduced system
\[\dot{z} = f(g(z), z, 0), \]
\[z(0) = z_0, \]
has a solution \(z^0(t) \) on an interval \([0, T]\), for some \(T > 0\);

(H3) \(x_0 \) is in the basin of attraction of the steady state \(g(z_0) \) of the fast system \(\dot{\xi} = g(\xi, z_0, 0) \).

If these hypotheses are satisfied, system (*) admits a solution \((x^\varepsilon(t), z^\varepsilon(t)) \) on \([0, T]\). In addition,
\[\lim_{\varepsilon \to 0^+} z^\varepsilon(t) = z^0(t) \]
and
\[\lim_{\varepsilon \to 0^+} x^\varepsilon(t) = x^0(t) = g(z_0)(t), \]
uniformly on any closed interval contained in \((0, T]\).

Steady-state vs. dynamic optimisation

<table>
<thead>
<tr>
<th></th>
<th>Metabolism</th>
<th>+ Enzyme production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state</td>
<td>Flux Balance Analysis (FBA)</td>
<td>Resource Balance Analysis (RBA)</td>
</tr>
<tr>
<td></td>
<td>Varma/Palsson 94</td>
<td>Goelzer et al. 11</td>
</tr>
<tr>
<td>Dynamic</td>
<td>Dynamic FBA (dFBA)</td>
<td>Dynamic Enzyme Cost Analysis (deFBA)</td>
</tr>
<tr>
<td></td>
<td>Mahadevan et al. 02</td>
<td>– TODAY –</td>
</tr>
</tbody>
</table>
Flux balance analysis (FBA)

- **Goal:** Determine metabolic fluxes maximizing a cellular objective.
- **Network model:** Metabolism & steady state
 \[0 = S_y v_y + S_x v_x - S_{bm} v_{bm} \]
- **Constraints:** Bounds on fluxes
 \[v_{i,min} \leq v_i \leq v_{i,max} \]
- **Optimization:** Linear programming (LP)
 \[\max v_{bm} \text{ such that (1) and (2)} \]

Dynamic flux balance analysis (dFBA)

- **Goal:** Determine metabolic fluxes maximizing a cellular objective over time (based on biomass concentration \(P(t) \)).
- **Network model:** Metabolism & dynamic
 \[
 \dot{y}(t) = -S_y^x v_y(t) P(t) \\
 \dot{x}(t) = S_x^y v_x(t) P(t) + S_x^x v_x(t) P(t) - S_{bm}^x v_{bm}(t) P(t) \\
 \dot{P}(t) = v_{bm}(t) P(t)
 \]
- **Constraints:** Bounds on fluxes & flux changes
 \[v_{i,min}(y,P) \leq v_i(t) \leq v_{i,max}(y,P), \quad |\dot{v}_i(t)| \leq \dot{v}_{i,max} \]
- **Optimization:** Non-linear dynamic
 \[\max_{v(t)} P(t_{end}) \text{ such that (3) and (4)} \]

Resource balance analysis (RBA)

- **Goal:** Determine cell composition (protein concentrations \(p \)) and metabolic fluxes \(v \) maximizing the growth rate \(\mu \).
- **Network model:** Metabolism+enzyme production & steady st.
 \[0 = S_y^x v_y + S_x^x v_x - \alpha \varepsilon S_p^x v_p \]
 \[0 = \varepsilon S_p^p v_p - \mu p \]
- **Constraints:** Enzyme capacity & cellular composition
 \[\sum_{j \in V_i} \left| v_j(t)/k_j \right| \leq p_i, \quad \sum_i c_i p_i \leq 1 \]
- **Optimization:** Iteratively solving LPs
 \[\max_{\mu,p} \mu \text{ such that (5) and (6)} \]

Dynamic enzyme-cost FBA (deFBA)

- **Goal:** Determine the dynamic cell composition and metabolic fluxes to maximize a cellular objective over a time interval
- **Network model:** Metabolism+enzyme production & dynamic
 \[
 \dot{Y} = -S_y^x V_y, \quad \dot{P} = \varepsilon S_p^p V_p, \\
 0 = S_x^y V_y + S_x^x V_x - \alpha \varepsilon S_p^x V_p
 \]
- **Constraints:** Enzyme capacity & cellular composition
 \[\sum_{j \in V_i} \left| V_j(t)/k_j \right| \leq P_i(t), \quad \sum_i c_i P_i(t) \leq 1 \]
- **Optimization:** Linear dynamic
 \[\max_{V,Y,P} \int_{0}^{t_{end}} c^T P(t)dt \text{ such that (7) and (8)} \]
Constraints

- Enzyme capacity constraints
 \[\left| \frac{v_1}{c_1} \right| + \cdots + \left| \frac{v_m}{c_m} \right| \leq P_E \]
- Biomass-independent flux bounds
 \[v_{min} \leq v \leq v_{max} \]
- Non-negativity of molecular species
 \[Y \geq 0, \quad P \geq 0 \]
- Biomass composition constraints
 \[H_B P \leq h_B \]

Dynamic optimization problem

Let \(z = (Y, P) \).

\[
\max_{y(t), z_0} \int_0^{t_{end}} \Phi(z(t), v(t)) \, dt \quad + \quad \psi(z(t_{end}))
\]

s.t.
\[
\dot{Y} = -S_y^y V_y, \quad \dot{P} = \epsilon S_p^p V_p, \\
S_y^x V_y + S_x^x V_x - \alpha \epsilon S_p^x V_p = 0, \\
z(0) = z_0, \\
z(t) \geq 0, \\
v_{min} \leq v(t) \leq v_{max}, \\
H_C v(t) \leq H_E P(t), \quad H_B P(t) \leq h_B.
\]

Minimal example

- Components: Nutrient \(Y \), metabolite \(X \), generic enzyme \(P \)
- Reactions
 \[V_y : Y \rightarrow X \text{ (uptake)}, \quad V_p : \alpha X \rightarrow P \text{ (biomass)} \]
- Enzymatic constraint
 \[\frac{V_y}{k_y} + \frac{\epsilon V_p}{k_p} \leq P \]
- Approximate model (on long time-scales)
 \[\dot{Y} = -V_y, \quad \dot{P} = \epsilon V_p, \quad V_y = \alpha \epsilon V_p \]

Objective functionals

- Maximization of terminal biomass
 \[J_1 = P(t_{end}) \]
- Maximization of discounted biomass integral
 \[J_2 = \int_0^{t_{end}} P(t) e^{-\mu \tau} \, d\tau \]
- Minimization of time to consume nutrients
 \[J_3 = -\int_0^{t_{end}} d\tau = -t_{end} \]

with \(Y(t_{end}) = 0 \).
Optimization results for minimal network

Terminal biomass Discounted biomass Minimal Time

Analytical proof of existence and uniqueness for J_2 and J_3 → mathematical optimum biologically meaningful?

Core cellular network

Network specification

Minimal network yields Monod model

A. Bockmayr, Metabolic Networks, 16 July 2015 17 / 24

A. Bockmayr, Metabolic Networks, 16 July 2015 18 / 24

A. Bockmayr, Metabolic Networks, 16 July 2015 19 / 24

A. Bockmayr, Metabolic Networks, 16 July 2015 20 / 24
Case study: Carbon switch

Growth scenario:
- Low amount of preferred carbon source C_1
- High amount of non-preferred carbon source C_2
- Ample oxygen supply

Objective: Discounted biomass

$$J = \int_0^{t_{\text{end}}} c_{bm}^T P(t) e^{-\mu t} dt$$

Dynamic optimization results I

Substrates

Biomass & Growth

Four cellular growth phases

Dynamic optimization results II

Cell composition

Metabolic fluxes

Cellular reorganisation at the end of phase (b)

Discussion

Modeling metabolism including enzyme costs
- Mass balance ODE model for cellular metabolism and biomass production.
- Time-scale separation yields dynamic biomass model with quasi steady-state metabolic constraints.
- Dynamic optimisation framework: deFBA

Case studies
- Minimal network yields Monod growth model.
- Core network shows different exponential growth phases and pre-adaptation to impending nutrient depletion.
- Choice of the objective functional crucial for the results.