Metabolic Networks

Alexander Bockmayr
Freie Universität Berlin

DFG Research Center MATHEON
Mathematics for key technologies

Network Analysis, FU Berlin, SS14

Importance

- Biology
 - Cell metabolism
 - Catabolism, anabolism
- Medicine
 - Metabolic disorders
 - Cancer
- Biotechnology
 - Biofuel
 - Bioleaching

Mathematical representation
Algebraic description

- Stoichiometric matrix $S \in \mathbb{R}^{m \times n}$
 - Rows \sim internal metabolites $i = 1, \ldots, m$
 - Columns \sim internal and external reactions $j = 1, \ldots, n$
 - S_{ij}: stoichiometric coefficient of reactant i in reaction j

- Set of irreversible reactions Irr

- Metabolic model $\mathcal{M} = (S, Irr)$

1. Kinetic modeling

- Metabolites i and reactions j
- $C_i(t)$: metabolite concentrations at time t
- $v_j = v_j(C, k)$: reaction rates, depending on kinetic law and kinetic parameters k
- S_{ij}: stoichiometric coefficient

$$\frac{dC_i}{dt} = \sum_{j=1}^{n} S_{ij} v_j \quad \text{or} \quad \frac{dC}{dt} = S \cdot v(C, k)$$

- System of ordinary differential equations (ODEs)

2. Constraint-based modeling

- Steady-state assumption:
 Assume metabolite concentrations C_i and reaction rates v_j are constant \sim flux vector $v \in \mathbb{R}^n$

- Stoichiometric constraints (mass balance):
 $$\sum_{j=1}^{n} S_{ij} v_j = 0, \text{ for all } i = 1, \ldots, m$$

- Thermodynamic irreversibility constraints:
 $$v_j \geq 0, \text{ if } j \text{ is irreversible}$$

\leadsto system of linear equations and inequalities in \mathbb{R}^n
Steady-state flux cone

Set of all possible steady-state flux distributions

\[C = \{ v \in \mathbb{R}^n \mid Sv = 0, \; v_i \geq 0, \; i \in \text{Irr} \} \]

\(\rightsquigarrow \) polyhedral cone