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Abstract

Extending the single optimized spaced seed of PatternHunter [20] to multiple ones, Pattern-
Hunter II simultaneously remedies the lack of sensitivity of Blastn and the lack of speed of Smith-
Waterman, for homology search. At Blastn speed, PatternHunter II approaches Smith-Waterman
sensitivity, bringing homology search technology back to a full circle.
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1 Introduction

The task of homology search is to find similar segments, or local alignments, between two DNA
or protein sequences, measured by match, mismatch and gap scores. Homology search is crucial to
biological research and routinely needed by biologists. For example, the NCBI Blast [1] server processes
over 105 queries a day, and this rate is growing by 10-15% per month. Because of the large sizes of
DNA and protein databases, homology search is very time consuming and often needs supercomputers
to conduct. Yet, as GenBank doubles in size every 18 months [23] and the list of completed genomes
(now including human [14, 28], mouse [22], and rice amongst many other species) expands quickly,
the current computational cost is only the tip of the iceberg.

While having made tremendous contributions to science in the past 20 years, the current homology
search tools are showing their age. Heuristic searches with members of the Blast family [1, 11, 13, 27] or
FASTA [19] are slow for modern genomic data and miss many alignments. Meanwhile, the exhaustive
Smith-Waterman methods based on dynamic programming, like SSearch [24, 26], are often too slow
to be practical, even with supercomputers. Specialized software, such as MegaBlast [29], BLAT [16],
and MUMmer [8], were developed to speed up Blast for highly similar sequences. Many commercial
and academic parallel “BlastMachines” were also built to cope with the huge computational load.

PatternHunter [20] is a new generation general purpose homology search tool designed to meet
this tremendous need. At Blastn default sensitivity, PatternHunter runs at MegaBlast speed [20].
PatternHunter was used [22] to compare the human genome against the mouse genome at a speed
over a hundred times faster than Blastn at the same sensitivity. It uses novel approaches, including an
“optimized spaced seed”, to substantially improve sensitivity and speed simultaneously. Nonetheless,
a last piece of the puzzle remains to be settled: to achieve 100% sensitivity, Smith-Waterman dynamic
programming is still the only option, but it is way too slow. The design goal of PatternHunter II is
to solve this sensitivity problem: PatternHunter II aims to achieve a sensitivity approaching that of
Smith-Waterman with a speed similar to the default Blastn.
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One new idea in PatternHunter [20] was the introduction of an “optimized spaced seed”. In Blast,
exact matches of k continuous letters is used as a “seed” to find long matches around it, whereas in
PatternHunter, a seed is k discontinuous letter matches, where the relative positions of the k letters
are optimized in advance. This has helped PatternHunter to significantly increase its sensitivity over
Blast. It was noticed in [20] that more spaced seeds will help increase sensitivity further and at low
cost. This fact was also recently independently noticed and investigated by Buhler, Keich and Sun [5]
and Brejova, Brown and Vinar [3]. Earlier, not in the context of Blast-type homology search, non-
optimal or randomized multiple spaced patterns were studied by Pevzner and Waterman in [25] as
multiple filtration techniques, used in FLASH system by Califano and Rigoutsos [6], and to cover a
region with near certainty by multiple randomized hash functions by Buhler [4].

Two problems had postponed us from implementing multiple optimal spaced seeds in the original
PatternHunter: large memory requirements for multiple hashtables and the difficulty of finding the
optimal seed combination. Since [20], many researchers have recently further studied various aspects
of spaced seeds [2, 3, 5, 7, 15] and given exponential or heuristic algorithms for computing the optimal
seed(s). However, the complexity of finding optimal spaced seeds remains open. Even the complexity
of computing the hit probability of given seeds is unknown.

This paper describes PatternHunter II which implements the optimized multiple seed scheme for
increased sensitivity. We give a new greedy method for finding near optimal multiple seeds. We
generalize the dynamic programming in [15] to compute the hit probability for k seeds. We describe
how we handle multiple hashtables and memory issues. We then study the theoretical performance
of multiple seeds and compare the practical performance of PatternHunter II, Blastn, and SSearch
(Smith-Waterman dynamic programming).

The complexity questions of the optimal spaced seeds have not escaped our attention. We take
this chance to settle these open questions in Section 3 of this paper:

• Given k seeds, computing the hit probability under the uniform distribution is NP-hard.

• There is a provably good polynomial time approximation to compute the hit probability for k

given seeds, with arbitrary precision.

• The problem of finding k optimal seeds is NP-hard. It cannot be approximated within ratio e−1
e

.

• The problem of finding even one optimal seed is NP-hard.

2 Optimized Multiple Spaced Seeds and PatternHunter II

Following [20], we denote a spaced seed as a binary string. Let a be a seed. The length of a is denoted
by |a|, while ‖a‖ denotes the weight of a, i.e. the number of 1’s in a. Intuitively, a 1 in the seed
corresponds to a required match whereas a 0 means “don’t care”. Since the 0s serve only to spread
the 1s, we restrict attention to seeds whose first and last bits are both 1. For example, the Blastn
default seed is 11111111111, or 11 consecutive matches to generate a hit. PatternHunter’s default
seed 111010010100110111 has weight 11 and length 18. Every seed corresponds to a regular expression
obtained from it by replacing each 0 by (0 + 1).

A homologous region is likewise represented by a binary string, with a 1 representing a match
and a 0 representing a mismatch. A substring from position i up to (but excluding) j is denoted by
R[i : j]. Thus R = R[0 : |R|]. We say a seed hits a homologous region if the corresponding regular
expression matches anywhere within the region. Or formally, R has a substring R[j : j + |a|], such
that R[j + i] = 1 whenever a[i] = 1 for 0 ≤ i < |a|. We also say that a hits R at position j. If a hits
R at position |R| − |a| then we say that a hits the tail of R. Let A = {a1, . . . , ak} be k seeds. A hits a
region R if there is an ai ∈ A that hits R. We say that the random region R is uniformly distributed
if Pr(R[i] = 1) = p for any 0 ≤ i < |R|. In general, if a region has p = x% identities, then p is called
the similarity level of R.
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Under any given distribution of R, the hit probability of multiple seeds is obviously no less than
the hit probability of any one of them. Therefore, multiple seeds will increase the sensitivity of the
homology search. However, the search program must then examine all the hits generated by all of the
seeds, which will in turn slow down the search speed. As explained in [20], another way to increase
the sensitivity by sacrificing speed is to decrease the weight of a seed.

Proper tradeoffs between these two approaches lead to the promised fast and sensitive Pattern-
Hunter II. We first show how to evaluate the hit probabilities of a given k seeds and how to find a
near optimal seed set. Then we proceed to PatternHunter II design and performance analysis.

2.1 Computing Hit Probability of Multiple Seeds

In the original PatternHunter and in [15], a dynamic programming algorithm was used to compute
the exact hit probability of a single seed. In this section, we extend the algorithm to compute the hit
probability of multiple seeds.

Let A = {a1, . . . , ak} be a set of k seeds and R a random region of length L with similarity level
p. For a binary string b and |b| ≤ i ≤ L, we define

f(i, b) = Pr(A hits R[0 : i]|b is a suffix of R[0 : i]).

The hit probability of A on R is then equal to f(L, ε), where ε is the empty string. Note that for any
i > |b|,

f(i, b) = (1 − p)f(i, 0b) + pf(i, 1b).

We’ll try to compute f(i, b) in terms of other f(i′, b′) computed earlier, and limit the set of b’s we
need to consider in the process.

If a suffix b of a region R is itself hit by A, then f(i, b) = 1. We call a binary string b compatible
with a seed a if b[|b| − j] = 1 whenever a[|a| − j] = 1 for 0 < j ≤ min(|a|, |b|). Clearly, if a suffix b of
a region R is not compatible with a, then a cannot hit the tail of R. This leads us to

Definition 1 Let B be the set of binary strings that are not hit by A but compatible with some a ∈ A.
Let B(x) denote the longest proper prefix of x that is in B.

Note that ε ∈ B. Suppose b ∈ B. Then b is compatible with some a ∈ A, and therefore, so is 1b.
If 1b 6∈ B, then it must be hit by some a′ ∈ A, and f(i, 1b) = 1. If 0b 6∈ B, then (assuming every seed
starts with a ‘1’) it cannot be hit by A, and therefore must be incompatible with every a ′ ∈ A. In
that case f(i, 0b) equals f(i − |b| + |b′|, 0b′), where 0b′ equals B(0b). This shows that f(i, b) can be
computed by dynamic programming as follows:

Algorithm DP

Input A seed set A, similarity level p and length L.
Output The probability that A hits a p-random region of length L.
1. compute the compatible suffix set B

2. for i from 0 to L do
3. for b in B from longest to shortest do
4. if i < |b|
5. f [i, b] := 0
6. else

7. f0 := f [i − |b| + |b′|, 0b′], where 0b′ = B(0b)
8. if A hits 1b
9. then f1 := 1
10. else f1 := f [i, 1b]
11. f [i, b] := (1 − p) × f0 + p × f1

12. output f [L, ε].
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Theorem 1 Let A be a set of seeds and R be a random region, Algorithm DP computes Pr(A hits R)
correctly.

Denote the maximum length of a seed in A by M . Both lines 7 and 8 can be precomputed in
time O((|A| + M)× |B|). For any string x, denote the reverse string of x by xr. We start by building
a trie TA for the reverse seeds. Then we build the trie TB for reversed strings in B, complete with
suffix links B ′(x) representing function (B(xr))r, layer by layer. Suppose that layers 0, . . . , d have
been computed. For each a ∈ A in turn, we traverse the constructed part of TB compatible with a.
At each leaf x, we create—if not already present—compatible children in layer d + 1. That is, if bit
d of ar is 0, we create both a 0- and a 1-child, while if that bit is 1, we only create the 1-child. If
this was the final bit of a, we mark the new nodes as terminal, which signals that it is hit by A, and
prevented from having children. The suffix link B ′(x1) is simply set to (B ′(x))1, the 1-child of node
B′(x), which must exist, since B ′(x) has depth less than d. Node B ′(x) need not have a 0-child, so
to find B′(x0) we must keep following suffix links, upto M times, until we either get to the root or
find a node y that does have a 0-child. Then we set B ′(x0) to epsilon or y0, respectively. Setting a
suffix link from x to a terminal node makes x itself terminal, and in this way we find all instances
of 1b being hit by A, for any b ∈ B. The time needed to construct layer d is O((|A| + M) × |B=d|).
Summing over all layers gives a precomputation time complexity of O((|A| + M) × |B|). Therefore,
the total time complexity of the algorithm is O(((|A|+M + L)× |B|), with |B| ≤

∑
a∈A |a| × 2|a|−‖a‖.

We note that a similar method can be used to compute the k-hit probability. A seed set k-hits a
region R if R is hit by k different combinations of seed and position. Similarly to the 1-hit probability
computation, we use f [i, b, k] to denote the k-hit probability for region R[0 : i] with suffix b. Now
suppose we already know f [i, b, k−1], in order to compute f [i, b, k], we need only modify the following
lines of Algorithm DP:

Algorithm DP-k-hits

5. f [i, b, k] := 0
7. f0 := f [i − |b| + |b′|, 0b′, k], where 0b′ = B(0b)
9. then f1 := f [i − |b| + |b′|, 1b′, k − 1], where 1b′ = B(1b)
10. else f1 := f [i, 1b, k]
11. f [i, b, k] := (1 − p) × f0 + p × f1

Correctness follows from the observation that the probability of a region—the tail of which is
hit—to have at least k hits, equals the probability that the region without its tailing bit has at least
k − 1 hits.

Algorithm DP and DP-k-hits can also be extended to compute the hit probability of random
regions with more involved distributions. For example, Brejova, Brown, and Vinar [2] studied an M (3)

distribution of coding region homologies. Because of the codon period of the coding regions, in an
M (3) distribution, the similarities at positions 3i + k are pk, k = 0, 1, 2. In this paper, we will use
a three mer (p0, p1, p2) to denote the parameters of the M (3) distribution. More generally, suppose
the similarity at position i is pi, i = 0, . . . , L − 1. To compute the hit probability for such a random
region, the only change is to replace p’s with appropriate pj’s in line 11 of each algorithm.

Another distribution studied in [2] is M (8), which is a Hidden Markov Model (HMM) with 8
parameters. Another algorithm, which is an extension of the hit probability computation algorithm
in [15], is also introduced in [2] to compute the single hit probability in a random region of an HMM
distribution. Without giving the details, we notice that a similar method as used in [2] can extend
Algorithm DP and Algorithm DP-k-hits to compute the multiple seed hit probability under an HMM
distribution.

We straightforwardly implemented Algorithm DP in a Java program. Using a Pentium IV 3GHz
PC, it took 0.70 seconds to compute the hit probability for a set of 16 weight-11 seeds with length ≤
21, on a random region with length 64. This was reduced to 0.37 seconds when the weight was changed
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to 12, showing that the running time of the algorithm largely depends on the maximum number of
zeros in every seed. Reducing the number by one will approximately half the running time.

2.2 Finding a Good Seed Set Greedily

Enumerating all possible sets and evaluate them by Algorithm DP in Section 2.1 is clearly not feasible
because of the exponential number of possible sets. Instead, we now show to how construct a good set
of seeds in a greedy fashion. That is, we compute the first seed a1 which maximizes the hit probability
of {a1}. Then, fixing a1, we compute the second seed a2 so as to maximize the hit probability of
{a1, a2}. We continue in this manner until the desired number of seeds or the desired hit probability
is reached.

Although such a “greedy” seed set may not optimize the combined hit probability, in some sense
a greedy seed set is even more desirable than an optimal one: One may first want to do a single seed
comparison for a first impression, and only much later, if ever, decide to try another seed in order to
find those alignments missed by the first.

It turns out that Algorithm DP is still efficient enough to be used to compute a practical set of
weight 11 seeds greedily—it took 12 CPU days for a Pentium IV 3GHz PC to compute a set of 16
weight 11 seeds, each being no longer than 21. When the random region has length 64 and similarity
70%, the first four seeds are: 111010010100110111, 111100110010100001011, 110100001100010101111,
1110111010001111.

We note that the optimization is done under a general assumption on the length and similarity
regions of homology regions, and does not depend on any specific database and query sequence.
Consequently, such a computation can be conducted only once in the development phase of a homology
search program, and 12 CPU days are acceptable. However, it would take a much longer time if we
want to compute a set of even slightly longer seeds. In such a case, we propose a different approach
in the following.

Suppose we have already computed a set A with N seeds using greedy, and C is the candidate set
for the (N +1)-st seed. The hit probability of A∪{a} for each a ∈ C can be estimated with k random
region samples. According to Theorem 6, accuracy of the estimate goes up with k. So, however, does
the computing time. Therefore, we used the following strategy to compute the (N + 1)-st seed: Let
C be the set of all candidate seeds, and k be a reasonably large number such as 500. We estimate the
hit probability of A ∪ {a} for each a ∈ C by k random sample regions, remove the worst performing
half of the seeds from C, and increase k to 2k. This process is repeated until only one seed is left in
C.

Using such a heuristic, we computed a set of 16 weight-12 seeds, each is no longer than 22.
The first four seeds are 111011001011010111, 1111000100010011010111, 1100110100101000110111,
and 1110100011110010001101.

Clearly, our greedy algorithm and the heuristic to compute the seeds can also be used to compute
a good seed set for other distributions. For example, for the homology search of coding regions, we
used the M (3) distribution (0.8, 0.8, 0.5) to compute a good set of seeds. This preserves the 70%
overall similarity that we’ve focussed on, while recognizing that the first two bases of a codon are
more conserved than the third one. In later sections of this paper, we will refer to the seeds optimized
for length 64 random regions with 70% similarity as the general purpose seeds, and refer to the seeds
optimized for the length 64 regions with M (3) distribution (0.8, 0.8, 0.5) as the coding region seeds.

2.3 The Performance of the Seeds

PatternHunter’s spaced seeds facilitate two ways to increase the sensitivity in homology searches: by
increasing the number of seeds, and by reducing the weight of a single seed. Both will increase the
running time because more random hits will be generated. Here we compare the performances of these
two ways.
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Figure 1: Recall that “similarity” is the percentage of identities in the homology region, and “sensitiv-
ity” is the probability of having a hit, in the given region. From low to high, the solid curves are the
hit probabilities of using the first k (k = 1, 2, 4, 8, 16) weight-11 general purpose seeds, respectively.
The dashed curves are the hit probabilities of using the single optimal weight w (w = 10, 9, 8, 7) seeds,
respectively.

Figure 1 compares the hit probabilities of multiple weight 11 seeds and a single weight < 11
seed. For a random region with length 64 and similarity level x, the hit probabilities of different seed
configurations were computed with Algorithm DP. From the figure we can see that the sensitivity
is approximately equally improved by doubling the number of seeds. Also, at high similarity levels,
doubling the number of the seeds achieves better sensitivity than reducing the weight of the single
seed by one. We have observed similar phenomena for weight-12 general purpose seeds. The figure
for weight-12 seeds can be found in [18].

According to a lemma in [20], reducing the weight by one increases the expected number of hits
by a factor of four (the alphabet size) in DNA homology search. Doubling the number of the seeds,
however, only increases the expected number of hits by a factor of two. Therefore, we conclude that
using multiple seeds is the preferred way to gain sensitivity in homology search.

Figure 1 also tells us that at an 80% similarity level, 8 or 16 weight-11 seeds can achieve near 100%
hit probability on a length-64 random region. For longer regions, the hit probabilities are even higher.

2.4 PatternHunter II Design

PatternHunter II follows the design of the original PatternHunter [20]. That is, for a given weight
W length L seed, a hashtable is built for the subject sequences. For each length L substring s of the
query sequences, the hashtable provides a way to efficiently retrieve all the hits of s in the subject
sequences. Then a gapped extension is performed for each of the hits to find local alignments. In
two-hit mode, a gapped extension is performed only if two nearby hits are found on the same diagonal.

A major change in PatternHunter II is the use of multiple seeds. Accordingly, a hashtable is built
for each of the given seeds. For each substring of the query sequences, all hits generated from all
hashtables are used for the gapped extensions. Also, in two-hit mode, the two nearby hits can be from
different hashtables. If not otherwise specified, all performance tests of PatternHunter II in this paper
uses the one-hit mode.

The hashtable in PatternHunter consists of an entry table with 4W entries, and a linked list which
is an array with n elements, n being the total size of the subject sequences. All of the entries and
elements are represented by 32-bit integers. Therefore, if we use k seeds in PatternHunter II, the
hashtables would occupy 4(4W k + nk) bytes. This is still feasible in a medium size homology search,
e.g., with k = 8, W = 11, and n = 32 × 106, the hashtables use about 256Mbyte of memory.

However, for very large n, memory requirements exceed the capacity of a desktop computer. In
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such a case, PatternHunter II divides the very large subject sequences into several smaller segments,
and each of the smaller segments is searched in turn. This possibly breaks an alignment into two
parts at a division boundary. However, because an alignment is usually much shorter than a segment,
the chance of breaking an alignment is low. Moreover, PatternHunter has a mechanism to extend an
alignment across the division boundary, and also tries to divide a long DNA sequence at the regions
that have long series of letter Ns (the letters not yet determined by DNA sequencing). All these
methods minimize the risk of losing alignments. Given the input and the size of memory, the division
of the subject sequence is decided by PatternHunter II and is transparent to the users.

2.5 PatternHunter II Performance

We conducted the sensitivity benchmark of PatternHunter by comparing its performance with that of
Blast and the Smith-Waterman algorithm.

The Smith-Waterman implementation that we used is SSearch [24], a subprogram in the FASTA
package. The complete FASTA package is downloadable at ftp://ftp.virginia.edu/pub/fasta/.
The DNA sequences we used are two sets of human and mouse EST sequences, downloaded from
NCBI’s ftp site, ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/. The month.est human.Z and
month.est mouse.Z files at the site contain all new or revised human and mouse EST sequences re-
leased in the last 30 days, respectively. We have downloaded the two files released on April 14, 2003.
There were 29715 mouse EST sequences and 4407 human EST sequences in these two files.

Due to the fact that there are many long sequences of identical letters, especially long sequences of
As and Ts, the Smith-Waterman algorithm generates too many junk alignments of these sequences. To
avoid this, we did a trivial “repeat masking” by turnning all those sequences of ten or more repetitive
letters to letter Ns. To ensure a fair comparison, all of PatternHunter, Blast, and SSearch are fed
with the same masked data. Each program uses a score scheme equivalent to: match = 1, mismatch
= −1, gapopen = −5, gapextension = −1. Only those local alignments with scores no less than 16
are recorded and taken into account.

It took more than 20 CPU days for the SSearch program to align each of the mouse EST sequences
with each of the human EST sequences. All pairs of ESTs that contain a local alignment with score
equal to or higher than 16 were recorded. If a pair of ESTs has more than two local alignments, only
the one with the highest score was considered. In total, 3346700 pairs were found and the maximum
local alignment score is 694. All the benchmark data sets and computation results can be found at
http://www.bioinformaticssolutions.com/ph/benchmark.html.

Then we ran both PatternHunter II and Blastn to compare the two EST files, and checked how
many of the pairs found by SSearch can also be found by them. Because neither PatternHunter nor
Blast tries to compute the optimal alignments for the homologies they have found, if SSearch finds a
local alignment with score x for a pair of ESTs, we regard the pair as “found” by PatternHunter II
(or Blast) if it finds a local alignment of score ≥ x

2 for the same pair of ESTs.

Suppose Smith-Waterman finds y pairs of ESTs with local alignment score at least x, and y ′ of the
y pairs can also be found by another program with alignment score at least x

2 . As Smith-Waterman

is “lossless”, the ratio y′

y
can be considered as the sensitivity of the other program at the alignment

score x. If the other program is also “lossless”, this ratio would be equal to 1.

Figures 2 and 3 compare the sensitivity of Blastn and different configurations of PatternHunter
II. The sensitivity versus alignment score curves for Blastn and PatternHunter II with coding region
weight 11 seeds is displayed in Figure 2. And Figure 3 compares Blastn, PatternHunter II with both
coding and general purpose seeds. In order to display better, Figure 3 only focuses on the region
where the alignment score is no more than 50 and the sensitivity exceeds 90%.

The following table lists the running time of different programs, with weight 11 seeds for Blastn
and PatternHunter, on a Pentium IV 3GHz Linux PC:
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Figure 2: The dashed curve is the sensitivity of Blastn, seed weight 11. From low to high, the solid
curves are the sensitivity of PatternHunter II using 1, 2, 4, and 8 weight 11 coding region seeds,
respectively.
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Figure 3: The thick dashed curve is the sensitivity of Blastn, seed weight 11. From low to high, the
solid curves are the sensitivity of PatternHunter II using 1, 2, 4, and 8 weight 11 coding region seeds,
and the thin dashed curves are the sensitivity of PatternHunter II using 1, 2, 4, and 8 weight 11
general purpose seeds, respectively.

SSearch Blastn PatternHunter II

seeds 1 2 4 8
20 days 575 s general 242 s 381 s 647 s 1027 s

coding 214s 357s 575s 996s

This benchmark demonstrates that PatternHunter II can achieve much higher sensitivity than
Blastn at much faster speeds. Furthermore, PatternHunter II with 4 coding region seeds runs at the
same speed as Blastn and 2880 times faster than SSearch, but with a sensitivity approaching the
latter.

The above table and Figure 3 also confirms a result of [2], that the coding region seeds not only
run faster, because there are less irrelevant hits, but are also more sensitive than the general purpose
seeds. This is not a surprise because the EST sequences are coding regions.

2.6 Comparison with Other Seeds

The authors of [5] and [2] have also designed some seeds. In this section we briefly compare their seeds
with the seeds used in PatternHunter II.

A “Mandala” system is used in [5] to design multiple spaced seeds. Since the paper only pro-
vided two weight 12 noncoding seeds π1 = 111110010000100011111 and π2 = 111011101101111
found by Mandala, we have also used the first two PatternHunter II general purpose weight 12 seeds
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Figure 4: A: PH II’s two weight 11 coding region seeds. B: PH II’s one weight 10 coding region seed
1101100101000101101. C: M (8) seed 11011011000011011 in [2]. D: M (3) seed 11001011001011011 in
[2].

111011001011010111 and 1111000100010011010111, for a fair comparison. Using the same EST data
as above, our result showed that Mandala seeds π1 +π2 find fewer significant alignments than our two
weight 12 seeds, both using PatternHunter II as the main program. The Mandala seeds found more
insignificant alignments with scores less than 24, using 284 seconds, and the PatternHunter II seeds
found more alignments with scores greater than 24, using 256 seconds.

Using a fifth order Markov model to model the coding regions, the authors of [5] also used their
Mandala system to design a weight 11 coding region seed πC5 = 1110000011011011011. Also, another
weight 11 coding region seed πsp = 1101100001101101101 is designed by manually modifying the seed
πC5 . We compared the performance of πC5 , πsp and PH II’s weight 11 coding region seed, when used
in PH II. The result showed that the seed πC5 designed by their Mandala system is noticeably worse
than the other two seeds, while the performances of PH II’s seed and their manually designed πsp seed
are almost identical. A figure illustrating this comparison can be found in [18].

Brejova, Brown, and Vinar [2] proposed an HMM model M (8) for spaced seeds and demonstrated
its clear advantage on coding regions. Using the same EST sequence data, Figure 4 provides a
comparison of PH II’s two weight 11 coding regions seeds, PH II’s single weight 10 coding region seed
1101100101000101101, the M (8) seed 11011011000011011 in [2], and the M (3) seed 11001011001011011
in [2]. Observe that a single weight 10 seed is less sensitive than two weight 11 seeds, Figure 4. The
weight 10 M (8) seed also runs slower using 416 seconds on our data, while two weight 11 PH II seeds
used only 357 seconds. Intuitively, at a weight one greater, a seed is expected to have only a quarter
of the hits, hence fourfold speedup. Two of them should give a twofold speedup, while having the
better sensitivity as shown in Figure 4. However, when the query and the subject sequences are not
both large enough, other overheads diminish the gain.

All PH II’s coding region seeds are computed using the M (3) model with a (0.8, 0.8, 0.5) distribution
pattern. We have also tried to compute a set of seeds, SHMM , using the M (8) model provided in [2].
Using the same EST benchmark data, our results showed that the multiple seeds computed with M (3)

(0.8, 0.8, 0.5) and the seeds computed with M (8) model perform approximately the same. A figure
that illustrates the performances can be found in [18].

The above comparisons reveal that although the more sophisticated model of the coding regions
provided remarkable improvement on the seed performance in [5] and [2], this improvement does not
necessarily carry over to other data sets (especially, other species). Specifically, for weight 10, the
M (8) seed1 of [2] is slightly worse than the weight 10 coding region seed we have computed using their
simpler model M (3) with very intuitive parameters (0.8, 0.8, 0.5).

1While this seed was obtained in [2] by limiting number of 0’s to 7, we have verified that it is still optimal under their
M

(8) model when the number of 0’s is limited to 11.
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3 The Complexity of Finding Optimal Spaced Seeds

Many authors [20, 2, 3, 15, 5, 7] have proposed heuristic or exponential time algorithms for the general
seed selection problem: find one or many optimal spaced seeds so that a maximum number of target
regions are each hit by at least one seed. A seemingly simpler problem is to compute the hit probability
of k given seeds. In this section, we show that these are all NP-hard problems. This gives confidence
that the greedy algorithm in Section 2.2 and the exponential time algorithm in Section 2.1 are perhaps
the best one can do. We will also give a provably-good approximation algorithm to compute the hit
probability of k seeds. In particular, letting f(n) be the maximum number of 0’s in each seed, where
n is the seed length, the following are true.

1. If f(n) = O(log n), then the algorithm in Section 2.1 computes the hit probability of k seeds in
polynomial time; otherwise the problem is NP-hard, Section 3.1.

2. If f(n) = O(1), one or a constant number of optimal seeds can be computed in polynomial time
by enumerating all seed combinations and use Item 1 to compute their probabilities; otherwise,
even selecting one optimal seed is NP-hard, Section 3.3.

3. If f(n) = O(1), then the greedy algorithm in Section 2.2 for finding k seeds approximates the
optimal solution within ratio 1 − 1

e
in polynomial time, as this is implied by the greedy bound

for the maximum coverage problem [12]; otherwise the problem cannot be approximated within
ratio 1 − 1

e
+ ε for any ε > 0, Section 3.2.

Because of the space limit, we omit all the proofs in this section. However, the proofs can be found
in [18].

3.1 Computing the Hit Probability of Multiple Seeds Is NP-hard

Theorem 2 Computing the hit probability of many seeds on a uniformly distributed random region is
NP-hard.

3.2 The Hardness of Finding the Optimal Seed Set

The NP-hardness of the hit probability computation (Theorem 2) does not imply the hardness of
finding the optimal seed set. In this section, we prove that finding the optimal seed set is hard to
approximate when the random homologous regions are not uniformly distributed. More specifically,
we prove that approximating the following problem is hard:

Region Specific Optimal Seeds

Let R1, . . . , Rm be m homologous regions of length L. Find k seeds with weight W and length ≤ M

hitting the maximum number of homologous regions.

Theorem 3 The Region Specific Optimal Seeds problem cannot be approximated within ratio 1− 1
e
+ε.

Corollary 4 Removing length constraints on the seeds preserves NP-hardness of the Region Specific
Optimal Seed Set problem.

3.3 The Hardness of Finding One Optimal Seed

Theorem 5 The problem of finding a seed of given weight and length that hits each of a given set of
homology regions, is NP-hard. Consequently, the problem of finding an optimal seed of given weight
and length that hits the maximum number of given set of homology regions, is NP-hard.
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3.4 A PTAS for Computing the Hit Probability

In Section 2.1 we presented a dynamic programming algorithm for accurate hit probability computa-
tion. However, the dynamic programming algorithm runs in time exponential in |a| − ‖a‖, which in
many cases makes it infeasible. In this section we present a PTAS (polynomial time approximation
scheme) to compute the hit probability approximately. It is noteworthy that in this section we do not
make any assumption on the distribution of the random regions.

Our algorithm is simple: randomly sampling m homologous regions, and using the hit frequency
of the seed set on the m regions as the approximation to the hit probability. When this m is sufficient
large, the computation is sufficient accurate, i.e., we have the following

Theorem 6 Let A be a set of seeds. Let R be a random region under certain distribution and
R1, . . . , Rm be m independent samples of the random region. Let p be the probability that A hits
R and m′ of the m samples are hit by A. Then for any 0 < δ < 1, Pr(|p − m′

m
| > δ) ≤ 2 exp(−mδ2

3 ).

Consequently, if m > 3 log K
δ2 , then with probability greater than 1 − 2

K
, |p − m′

m
| ≤ δ.

4 Conclusion

Homology search is a very time-consuming computational task. Due to the small query and database
sizes in protein-protein searches, the bottleneck is with DNA-DNA (Blastn) searches, translated DNA-
protein (tBlastx) searches, and the exhaustive Smith-Waterman computation.

Using optimized spaced seeds and new algorithms, PatternHunter speeds up Blastn by 5-100 times,
depending on data size [20, 22], at the same sensitivity.

Using optimized multiple spaced seeds, PatternHunter II is over a thousand times faster than
Smith-Waterman at approximately the same sensitivity, for DNA sequence search.

We are currently investigating new multiple optimal seed schemes to approximate the Smith-
Waterman sensitivity for protein-protein searches, at Blastp speed. We are also developing the trans-
lated PatternHunter that aims to speed up tBlastx.
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