
Indexed Hierarchical Approximate String

Matching

Lúıs M. S. Russo⋆1,3, Gonzalo Navarro⋆⋆2, and Arlindo L. Oliveira1,4

1 INESC-ID, R. Alves Redol 9, 1000 Lisboa, Portugal. aml@algos.inesc-id.pt
2 Dept. of Computer Science, University of Chile. gnavarro@dcc.uchile.cl
3 CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, Portugal. lsr@di.fct.unl.pt
4 Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal.

Abstract. We present a new search procedure for approximate string
matching over suffix trees. We show that hierarchical verification, which
is a well-established technique for on-line searching, can also be used
with an indexed approach. For this, we need that the index supports
bidirectionality, meaning that the search for a pattern can be updated
by adding a letter at the right or at the left. This turns out to be eas-
ily supported by most compressed text self-indexes, which represent the
index and the text essentially in the same space of the compressed text
alone. To complete the symbiotic exchange, our hierarchical verification
largely reduces the need to access the text, which is expensive in com-
pressed text self-indexes. The resulting algorithm can, in particular, run
over an existing fully compressed suffix tree, which makes it very appeal-
ing for applications in computational biology. We compare our algorithm
with related approaches, showing that our method offers an interesting
space/time tradeoff, and in particular does not need of any parameteri-
zation, which is necessary in the most successful competing approaches.

1 Introduction and Related Work

Approximate string matching (ASM) is an important problem that arises
in applications related to text searching, pattern recognition, signal pro-
cessing, and computational biology, to name a few. The problem consists
in locating all the occurrences O of a given pattern string P , of size m, in
a larger text string T , of size n, where the distance between P and O is
less than a given threshold k. We focus on the edit distance, that is, the
minimum number of character insertions, deletions, and substitutions of
single characters to convert one string into the other.

⋆ Partially funded by the Portuguese Science and Technology Foundation by project
ARN, PTDC/EIA/67722/2006.

⋆⋆ Partially funded by Millennium Institute for Cell Dynamics and Biotechnology,
Grant ICM P05-001-F, Mideplan, Chile.



The most successful indexed approach to this problem, in practice,
is so-called “hybrid” indexing. It starts with a filtration phase that de-
termines the positions of potential occurrences. Those positions are then
sequentially verified in the text. The pattern pieces searched for in the
filtration phase are short enough to control the exponential cost of this
search, and long enough so that the number of occurrences to verify in the
text is also controlled. By carefully optimizing this partitioning, hybrid
indexes achieve O(mnλ) average time, for some 0 < λ < 1, and work well
for reasonably high error levels. Hybrid methods have been implemented
over q-gram indexes [1], suffix arrays [2], and q-sample indexes [3]. Yet,
many of those linear-space indexes are very large anyway. For example,
suffix arrays require 4 times the text size and suffix trees require at least
10 times [4]. Compressed indexes, based on succinct and compressed data
structures, provide less space-demanding indexes [5]. Their space require-
ments are measured in terms of the empirical text entropy, Hk, which
gives a lower bound for the number of bits per symbol achievable over
that text by a k-th order compressor.

There have been several approaches to ASM over compressed indexes.
The most successful one in practice is that of Russo et al. [6], which
builds over a Ziv-Lempel-based compressed index, and approaches hy-
brid performance in practice. This is faster than our new index, still ours
is significantly smaller, in theory and in practice. In addition, our al-
gorithm can run over most compressed text indexes, in particular over
fully-compressed suffix trees [7] (FCSTs), which offer complete suffix-tree
functionality. Hence, our algorithm can be used as a subroutine in other
suffix-tree-based algorithms.

2 Our Contribution

In this work we explore the impact of hierarchical verification on hybrid
search. Hierarchical verification means that an area that needs to be ver-
ified is not immediately checked with the maximum number of errors;
instead the error threshold is raised gradually. Curiously enough, this
technique was originally proposed by Myers [1] in his hybrid index and
later extended and used by Navarro et al. [8] for an on-line algorithm.
However, these approaches used hierarchical verification directly over the
text T , meaning that none of the repeated computation was factorized.
We investigate precisely how to do this computation over the index, thus
allowing us to avoid repeated computation.



Simultaneously, our result achieves compressed space, because we use
FCSTs, which are functional representations of suffix trees and in partic-
ular are bidirectional. Typical indexes, classical suffix trees in particular,
are unidirectional, meaning that they can search only by using the letters
at the end of the pattern. Due to the Rank/Select duality [5], bidirec-
tionalily arises naturally in a class of compressed indexes, which we will
refer to as bidirectional compressed indexes

Bidirectional indexes are one important ingredient of our approach.
Another crucial piece is computing the edit distance. Algorithms for this
purpose are typically unidirectional, computed from left to right, because
they are based on dynamic programing or automata. Interestingly this
computation was made bidirectional, more than 10 years ago, by Lan-
dau et al. [9]. They showed how to obtain the edit distance for strings A
and cB by extending that for for strings A and B, where c is a letter.

Combining these bidirectional algorithms we can use hierarchical ver-
ification directly over the index, instead of over T . Thus, we fill an impor-
tant gap in indexed ASM. Moreover, while hybrid methods need careful
tuning (where a small error can be disastrous), ours achieve close perfor-
mance without need of tuning (and can be improved by tuning as well).

In addition, our work addresses a very important practical issue. Com-
pressed indexes are usually self-indexes, meaning that they do not store
the text T but even so they are able to consult it. Even when in the-
ory reading ℓ consecutive letters takes O(ℓ) time, experimental results
show [10] that this is still two orders of magnitude slower than storing T .
This can easily be explained as the penalty of missing cache in modern
computer architectures. Efficient algorithms for ASM over compressed
indexes must therefore minimize their accesses to T . Hence hierarchical
verification directly over the index is a very important technique in this
context, both in theory and in practice.

3 Basic Concepts

We denote by T a string; by Σ the alphabet of size σ; by T [i] the
symbol at position (i mod n); by T.T ′ concatenation; by T = T [..i −
1].T [i..j].T [j+1..] respectively a prefix, a substring and a suffix; by S ⊑
S′ that S is a substring of S′. We refer indifferently to nodes and to their
path-labels, also denoted by v. The suffix tree of T is the deterministic
compact labeled tree for which the path-labels of the leaves are the suffixes
of T$, where $ is a terminator symbol not belonging to Σ. We will assume
n is the length of T$. For a detailed explanation see Gusfield’s book [11].



a b c c b a

a b b b a b

Fig. 1. Schematic repre-
sentation of the edit dis-
tance between abccba and
abbbab.

a b c c b a j: a b c c b a j:
0 1 2 3 4 5 6 0 0 0

a 1 0 1 2 3 4 5 1 a 0 1
b 2 1 0 1 2 3 4 2 b 1 0 1 2
b 3 2 1 1 1 2 3 3 b 2 1 1 1 2 3
b 4 3 2 2 2 2 3 4 b 2 2 2 2 4
a 5 4 3 3 3 3 2 5 a 2 5
b 6 5 4 4 4 3 3 6 b 6
i: 0 1 2 3 4 5 6 i: 0 1 2 3 4 5 6

Fig. 2. D table computation for strings abccba

and abbbab. (left) The numbers in bold refer to
the alignment shown in Fig. 1. (right) Compu-
tation with increasing error bound.

The suffix array A[0, n − 1] stores the suffix indexes of the leaves in
lexicographical order.

3.1 Bidirectional Compressed Indexes

Our algorithm can be implemented over any bidirectional index. This
means that, from the index point corresponding to a text substring T [i..j]
we can efficiently move to that of T [i..j+1] but also to that of T [i−1..j].

Although classical text indexes are not usually bidirectional, most
compressed indexes are. For example, FM-indexes [12] offer a so-called
LF mapping operation, which moves from the suffix array position k such
that A[k] = i, to position k′ such that A[k′] = i − 1. Compressed suffix
arrays [13], instead, offer function ψ, moving to a k′ such that A[k′] = i+1,
thus the inverse of ψ serves as an LF mapping as well.

FCSTs [7] build complete suffix tree functionality on top of a com-
pressed bidirectional index, in particular an FM-index fits best. The LF

mapping allows FCSTs implement Weiner links [14]: WeinerLink(v, a),
for node v and letter a, gives the suffix tree node v′ with path-label a.v[0..],
and it is the key to move from a v representing T [i..j] to a v′ representing
T [i − 1..j], that is, to birectionality. The other direction, that is, from
T [i..j] to T [i..j + 1], is supported just by moving to a child of v. FCSTs
support all of the usual suffix tree navigation operations, including suffix
links (via ψ) and lowest common ancestors (LCA(v, v′)).

3.2 Approximate String Matching

The edit or Levenshtein distance between two strings, ed(A,B), is the
smallest number of edit operations that transform A into B. We con-
sider as operations insertions, deletions, and substitutions.There is a well-



known dynamic programming (DP) algorithm that computes the D ma-
trix, where D[i, j] is the edit distance, ed(A[..i − 1], B[..j − 1]), between
the prefixes A[..i − 1] and B[..j − 1] of A and B. Fig. 2(left) shows an
example of the D matrix for A = abccba and B = abbbab. Therefore by
looking at cell D[6, 6] = 3 we can conclude that ed(abccba, abbbab) = 3.
Let the size of A and B be m and m′ respectively. This matrix can be
computed, in O(mm′) time, by setting D[0, 0] = 0 and

D[i, j] = min







D[i− 1, j] + 1 if i > 0
D[i, j − 1] + 1 if j > 0
D[i− 1, j − 1] + δA[i−1]=B[j−1] if i, j > 0







,

where δx=y is 0 if x = y and 1 otherwise. Ukkonen [15] noted that in order
to find cells in D whose value is k there is no need to compute cells with
value larger than k; those can be replaced by +∞. The remaining cells are
referred to as active cells. With this method, extending the computation
of ed(A,B) to ed(Ac,B) or ed(A,Bc) requires only O(k) time.

Assuming we have a text T , previously pre-processed into a FCST, the
problem we are interested in solving in this paper is: given a pattern P and
error limit k, determine all the substrings O of T for which ed(P,O) ≤ k.
As our running example consider that P = abccba, k = 2 and T =
abbbab.The only substring O of T is abbba. A way to find this string, not
always the most efficient one, is to perform a depth-first search over the
suffix tree of T , moving one letter at a time, simultaneously computing
the D table, for P and O′, where O′ is the path-label of the node we are
visiting. This table can be used to control the search. When we reach a
point O′ and ed(P,O′) ≤ k, which can be checked as D[|P |, |O′|] ≤ k, this
string is reported as an occurrence. Usually we also report all the positions
in T at which O′ occurs, which means traversing the whole subtree of O′

and reporting all its leaf positions. Otherwise if ed(P,O′) > k but there
is at least one active cell in the last row, i.e. D[i, |O′|] ≤ k for some i,
this means that ed(P [..i − 1], O′) ≤ k and, therefore O′ can potentially
be extended into an occurrence and the search is allowed to proceed. If,
on the other hand, there are no active cells in the last row of D, the
search can be abandoned, not proceeding to deeper points. For example
by looking at Fig. 2 we can conclude that the search should not proceed
further after abbbab because there are no active cells in the last row of
the table. Also, since all the other rows contain active cells, this point is
indeed reached by the search. It helps to think of D as a stack of rows
that is growing downwards. Note that it is a convenient coincidence that
the difference between the D tables of ed(P,O′) and ed(P,O′c) is only



the last row. This means that we can move between these two tables
simply by adding or removing a row. At each step the DFS algorithm
either pushes a new element into the stack, i.e. moves from ed(P,O′) to
ed(P,O′c), or it removes a row from the stack, i.e. moves from ed(P,O′c)
to ed(P,O′). This process is known as neighborhood generation and it will
be a key ingredient in our algorithm. The problem with this process is
that it might have a very low success rate, i.e. only a small percentage of
the nodes visited by the process turn out to be occurrences of P .

4 Bidirectional Traversal

Our algorithm will proceed in a slightly more sophisticated fashion. In-
stead of extending O′ only in one direction, to the right, we will use a
bidirectional search. Landau et al. [9] obtained the surprising result that
it is possible to compute ed(A, cB) from ed(A,B), also in time O(k). The
resulting algorithm is very sophisticated and the reader should consult
the original paper. For our purposes all we need are the following ob-
servations. The extension is not restricted to B, i.e. we can also extend
ed(A,B) to ed(cA,B). The number of errors does not have to be fixed,
i.e. we can extend a computation with k errors to a computation on k+1
errors in O(k+1) time. Finally, the data structure they use in their algo-
rithm are two doubly linked lists organized in a grid. This means that if
we compute ed(A, cB) from ed(A,B) we can revert back to the ed(A,B)
state by simply keeping a rollback log of which pointers to revert, which
requires O(k) computer words5. For our algorithm this idea suffices since,
as in the previous paragraph, the states we need to visit are always orga-
nized in a stack. Therefore we never need to compute a sequence such as
ed(A,B) to ed(A, cB) to ed(dA, cB) to ed(dA,B).

To improve the success rate of the process described above we should
start our search from an area of P that is well preserved. To limit the
number of errors we divide the pattern into smaller pieces. We will use
the following filtration lemma.

Lemma 1 ([10]). Let A and B be strings, let A = A0A1 . . . Aj , for

strings Ai and some j ≥ 1. Let ki ∈ R such that ed(A,B) <
∑j

i=0 ki.
Then there is a substring B′ of B and an i such that ed(Ai, B

′) < ki.

In our algorithm we will use A = P and B = O and divide the errors in
a homogeneous fashion, i.e. choose ki = α|Ai| + ǫ, where α = k/m and

5 It seems to us that it is possible to extend their algorithm to support this directly,
but if that is not the case we can still use the rollback log idea.



ǫ > 0 is a number that can be as small as we want and it is only used
to guarantee that ed(A,B) <

∑j
i=0 ki. Recall our running example with

O = abbba and P = abc.cba, assuming this is the partition of A. Therefore
we should have k0 = k1 = (2/6) × 3 + ǫ. Hence the lemma says that in
any O there is at least one substring O′ such that ed(O′, abc) < 1 + ǫ
or ed(O′, cba) < 1 + ǫ. In our example there are in fact two substrings
O′ that satisfy this property, ed(abb, abc) ≤ 1 and ed(bba, cba) ≤ 1. On
one hand this is good because it validates the lemma. On the other hand
it is excessive because the same string will be found in more than one
way. To solve this redundancy notice that we do not need to add ǫ to
both ki’s, i.e. we can choose k0 as before and k1 = 1. This means that
the conclusion of the lemma now states that there should be an O′ such
that ed(O′, abc) ≤ 1 or ed(O′, cba) < 1 ⇒ ed(O′, cba) ≤ 0, and hence the
redundancy is eliminated.

Note that the condition on O′ is no guarantee that there exists an
occurrence O of P , since it is a one-way implication. Hence the area
around O′ must be verified to determine whether there is an occurrence
or not. Note that in previous work the usual verification procedure is
computed in T , not taking advantage of the index. Therefore, verifying
those occurrences can cost O(k(m + k)) operations. The problem with
dividing P too much, such as when j = k + 1, is that the number of
positions to verify can become excessively large and again we get a low
success rate, i.e. only a small percentage of the O′s verified by the process
turn out to be occurrences of P .

The hybrid approach tries to maximize the overall success rate by
finding an optimal balance between filtration and neighborhood genera-
tion. It was shown [2] that the optimal point occurs for j = Θ(m/ logσ n),
with a complicated constant. Our approach can have a slightly different
optimal point, but if we use their j the resulting algorithm is never worse
than theirs. Moreover we also attempt to automatically determine the
hybrid point and hence eliminate the need for parameterization.

5 Indexed Hierarchical Verification

We modify the verification phase, after filtration, in two ways. (1) We
will perform it over the FCSTs instead of over T , to factor our possibly
repeated computations. (2) We use hierarchical instead of direct verifica-
tion, which also provides a strategy to approximate the optimal point.

The idea of hierarchical verification is to gradually extend the er-
ror level instead of jumping directly to k. This is obtained by iterating



Lemma 1.This technique was shown to be extremely efficient for the on-
line approach [2]. We use the following lemma (proof omitted).

Lemma 2. Let A and B be strings, let A = A0A1 . . . Aj, for strings Ai

and some j + 1 = 2h ≥ 1. Let ki ∈ R such that ed(A,B) <
∑j

i=1 ki.
For some fixed 0 ≤ i ≤ j, define A′

i′ = A2i′⌊i/2i′ ⌋ . . . A2i′ (1+⌊i/2i′ ⌋)−1, for

any 0 ≤ i′ ≤ h, as the hierarchical upward path from Ai to A, and define

accordingly k′i′ =
∑2i

′

(1+⌊i/2i
′

⌋)−1

i′′=2i′⌊i/2i′ ⌋
ki′′ as the error level corresponding to

each A′
i′ . Then there are strings B0 ⊑ ... ⊑ Bh = B and an i such that

for any 0 ≤ i′ ≤ h we have ed(A′
i′ , Bi′) < k′i′ . Moreover, for each i′, if A′

i′

is a prefix(suffix) of A′
i′+1 then Bi′ is a prefix(suffix) of Bi′+1.

Consider our running example with k = 2 and P = abccba. Instead of
applying Lemma 2 we will instead iterate Lemma 1, which is actually the
way we compute the partition in practice. We divide P = A = abc.cba
into pieces of size 3 and therefore we have k′0 = k′1 = 3× (2/6)+ ǫ = 1+ ǫ,
which in practice means 1 error per piece. Now we divide these pieces as
ab.c.cb.a and we have k0 = k2 = 2× (2/6)+ ǫ and k1 = k3 = 1× (2/6)+ ǫ,
this means 0 errors for all the pieces. Notice that we can refine our method
by adding ǫ to only one ki, as we did in Section 3.2. Hence we can choose
k0 = k2 = 2/3 and k1 = 1/3+ ǫ and k3 = 1/3. Notice that in our example
the occurrence abbba verifies this lemma because ed(ab, ab) < 2/3 and
ed(abb, abc) < (2/3) + (1/3) + ǫ, where ab and abc are substrings of P .

This lemma is used to reduce the cost of verifying an occurrence. In-
stead of directly verifying the space around a B0 when ed(Ai, B0) < ki for
a string B such that ed(A,B) < k, we extend the error level gradually. As-
suming i is even, this means checking for ed(Ai.Ai+1, B1) < ki+ki+1 first,
for some B1. Fig. 2(right) shows an example of this process, computed
with table D.Whenever a row reaches a certain level in the hierarchy and
contains active cells, the computation on that row is extended to activate
the cells that are < ki + ki+1. For example since D[2, 2] = 0 the cells in
row 2 that can be < 1+ ǫ are activated, i.e. cells D[1, 2] and D[3, 2], that
correspond to ed(a, ab) and ed(abc, ab). A similar process happens at row
3. In theory we can compute all the cells that are ≤ k all the time. Still,
we can also start to compute them at a given row, especially since it is
not necessary to fill upwards the missing cells in the table. That is, we
can compute the missing cells, up to < ki + ki+1, from the ones already
in the table. There is no problem if the value of the new cells is larger
than their value on the complete D table. In fact it is desirable. This will
only make the algorithm skip occurrences that, because of Lemma 2, will
be found in another case.



To determine that ed(Ai, B0) < ki we must compute the DP table
for these two strings. Extending this computation to ed(Ai.Ai+1, B1) <
ki+ki+1 is simple because table D only needs to be updated in its natural
directions (to the right and downwards). From the suffix tree point of view
this situation is also natural because it involves descending in the tree.

When i is odd the situation is a bit trickier. This time we must check
for ed(Ai−1.Ai, B1) < ki−1 + ki. This is much more difficult because we
need to move in the FCST by prepending letters to the current point. This
is possible with the WeinerLink operation, recall Section 3.1. Moreover
we need to extend the DP in unnatural directions (to the left and up-
wards). For this we use the result [9] mentioned in Section 3.2. Hence
computing each new row requires only O(k) operations. Note that the
underlying operation on which their algorithm relies is the longest com-
mon prefix of any two suffixes of A and B. To solve this we build a FCST
for P , in O(m) time, in uncompressed format so that the LCA operation
takes O(1) time. Note that this FCST is built only once at the beginning
of the algorithm and adds O(m logm) bits to the space requirements of
the algorithm. We determine the positions of O′[i..] in that suffix tree,
in O(m′) time, with the Parent and WeinerLink operations. Together
with the LCA operation we can compute the size of the necessary longest
common prefixes. Note that whenever O′ is extended to/contracted from
cO′, this information must be updated, by recomputing in O(m′) time.

Our algorithm consists in neighborhood generation, where the error
bound is gradually increased. Depending on the position of current P ’s
substring in the hierarchical verification the string O′ is extended either
to the left or to the right. Hence, as mentioned before, the ed(P,O′) states
are stored in a stack, whereas the O′ string being generated is stored in
a double stack structure that can be pushed/popped at both ends.

6 Practical Issues and Testing

We implemented a prototype, BiFMI, to test our algorithm. Lacking a
FCST implementation, we simulated it with a bidirectional FM-Index
over one wavelet tree [5]. We reverse the search so that the most common
search (forwards) is done using LF (where the FM-index is faster) instead
of ψ. We use efficient sequential algorithms as a baseline (namely BPM,
the bit-parallel DP matrix of Myers [16], and EXP, the exact pattern
partitioning by Navarro and Baeza-Yates [17]). We also included in the
comparison authors’ implementation of several competing indexes: Hybrid
is the classical hybrid technique over plain suffix arrays [2]; LZI and DLZI



Table 1. Memory peaks, in Megabytes, for the different approaches when k = 6.

ILZI Hybrid LZI DLZI FMIndex BiFMI

English 55 257 145 178 131 54
DNA 45 252 125 158 127 40
Proteins 105 366 217 228 165 63

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+03

1e+02

sec

ILZI
EXP

BPM
Hybrid

LZI
DLZI

FMIndex
BiFMI

1 2 3 4 5 6

k

english

1 2 3 4 5 6

k

dna

1 2 3 4 5 6

k

proteins

Fig. 3. Average user time for finding the occurrences of patterns of size 30 with k

errors. The y axis units are in seconds and common to the three plots.

are basic and improved algorithms based on the LZ-index [18], which par-
tition into j = k + 1 exact searches for pattern pieces and decompress
the candidate text areas for (non-hierarchical) verification [19]; FMIndex
is the same strategy applied over Navarro’s fast and large FM-index im-
plementation (which is much faster than our own FM-index); and finally
ILZI is a recent ASM algorithm [6] over the ILZI compressed index [10].

The machine was a Pentium 4, 3.2 GHz, 1 MB L2 cache, 1GB RAM,
running Fedora Core 3, and compiling with gcc-3.4 -O9. We used the
texts from the Pizza&Chili corpus6, with 50 MB of English and DNA
and 64 MB of proteins. The pattern strings were sampled randomly from
the text and each character was distorted with 10% of probability into
an insertion, deletion, or substitution. All the patterns had length m =
30. Every configuration was tested during at least 60 seconds using at
least 5 repetitions. Hence the number of repetitions varied between 5 and
130,000. To parameterize the hybrid index we tested all the j values from
1 to k + 1 and reported the best time. We did a similar process on the
ILZI index. We tested our algorithm, BiFMI, in automatic mode, i.e. not
using any parameterization.

The average query time, in seconds, is shown in Fig. 3 and the respec-
tive memory heap peaks for indexed approaches are shown in Table 1.
The hybrid index provides the fastest approach to the problem. However
it also requires the most space. Our BiFMI index, on the other hand,

6 http://pizzachili.dcc.uchile.cl



achieves the smallest space (and it can still be reduced). We maintain a
sparse sampling for our prototype, to show that even within little space we
can achieve competitive performance. The FMIndex, on the other hand,
needs a much denser sampling to be competitive. Thus our hierarchical
and bidirectional verification method was faster than the basic one, even
if run on a much slower index (our versus Navarro’s FM-Index).

Aside from the hybrid index, the fastest approach in reduced space
is the ILZI-based one. The performance of our prototype closely follows
that of ILZI, except for the DNA file. This indicates that we were able to
approach hybrid performance. We were also, mostly, able to reduce the
gap caused by cache misses. Notice that the ILZI index is consistently at
most one order of magnitude slower than Hybrid, for k ≤ 3. Our algo-
rithm was not so effective in the DNA file but was still able to avoid two
orders of magnitude slowdown for proteins and English. Notice that this
is important, since aside from the ILZI, the other compressed approaches
seem to saturate at a given performance for low error levels: in English
k = 1 to 3, in DNA k = 1 to 2, and in proteins k = 1 to 5. This is par-
ticularly troublesome since indexed approaches are the best alternative
only for low error levels. In fact the sequential approaches outperform
the compressed indexed approaches for higher error levels. In DNA this
occurs at k = 4 and in English at k = 5.

We did not implement the algorithm of Landau et al. [9]; instead
we used the bit-parallel NFA of Wu et al. [20] and recomputed the D
table whenever it was necessary to change the computing direction. Note
this requires O(m) time when we switch from right to left or vice versa,
but after the change it will require only O(k) time for each new row.
Although in theory this process could slow down our algorithm by a
factor of O(log k), in practice this factor was negligible.

7 Conclusions and Future Work

In this paper we studied the impact of hierarchical verification in ASM.
We obtained an automatic hybrid index that uses fully-compressed suffix
trees. This a very important result because it is the first algorithm that
approximates the performance of the hybrid index automatically and ef-
fectively in practice. Our result is also very important because FCSTs
require only compressed space, i.e. nHk + O(n log σ) bits. Compared to
other compressed indexes, our approach was more efficient for low error
levels. Although it was less efficient than the ILZI-based algorithm, it
requires less space in theory and in practice. In theory, the ILZI requires



5nHk + o(n log σ) bits, but, in practice that is closer to 3nHk, including
the sublinear term. On the other hand, a FCST requires nHk + o(n log σ)
bits in theory, but this becomes a bit higher in practice if we consider the
sublinear term. Moreover our algorithm can be used as a subroutine in a
suffix tree algorithm whereas the ILZI-based algorithm cannot.

References

1. Myers, E.W.: A sublinear algorithm for approximate keyword searching. Algorith-
mica 12(4/5) (1994) 345–374

2. Navarro, G., Baeza-Yates, R.: A hybrid indexing method for approximate string
matching. Journal of Discrete Algorithms 1(1) (2000) 205–239

3. Navarro, G., Sutinen, E., Tarhio, J.: Indexing text with approximate q-grams. J.
Discrete Algorithms 3(2-4) (2005) 157–175

4. Kurtz, S.: Reducing the space requirement of suffix trees. Softw., Pract. Exper.
29(13) (1999) 1149–1171

5. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1)
(2007) article 2

6. Russo, L.M.S., Navarro, G., Oliveira, A.L.: Approximate string matching with
Lempel-Ziv compressed indexes. In: 14th SPIRE. LNCS 4726 (2007) 264–275

7. Russo, L., Navarro, G., Oliveira, A.: Fully-Compressed Suffix Trees. In: 8th LATIN.
LNCS 4957 (2008) 362–373

8. Navarro, G., Baeza-Yates, R.: Improving an algorithm for approximate pattern
matching. Algorithmica 30(4) (2001) 473–502

9. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM
J. Comput. 27(2) (1998) 557–582

10. Russo, L.M.S., Oliveira, A.L.: A compressed self-index using a Ziv-Lempel dictio-
nary. In: 13th SPIRE. LNCS 4029 (2006) 163–180

11. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University
Press (1997)

12. Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM 52(4)
(2005) 552–581

13. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays.
J. of Algorithms 48(2) (2003) 294–313

14. Weiner, P.: Linear pattern matching algorithms. In: IEEE Symp. on Switching
and Automata Theory. (1973) 1–11

15. Ukkonen, E.: Finding approximate patterns in strings. Journal of Algorithms
(1985) 132–137

16. Myers, G.: A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM 46(3) (1999) 395–415

17. Navarro, G., Baeza-Yates, R.: Very fast and simple approximate string matching.
Information Processing Letters 72 (1999) 65–70

18. Navarro, G.: Indexing text using the Ziv-Lempel trie. J. Discrete Algorithms 2(1)
(2004) 87–114

19. Morales, P.: Solving complex queries over a compressed text index. Undergraduate
thesis, Dept. Comp. Sci., Univ. Chile (2005) In Spanish. G. Navarro, advisor.

20. Wu, S., Manber, U.: Fast text searching allowing errors. Commun. ACM 35(10)
(1992) 83–91


