Sequence Analysis SS 2013 Freie Universität Berlin, Institut für Informatik Knut Reinert, Sandro Andreotti Sommersemester 2013

9. Exercise sheet, July 5th, 2013 Discussion: July 10th, 2013

Exercise 1.

Minimal Resolved Match Refinement

Prove the following Lemma:

Lemma 1. There exists a unique resolved refinement \overline{S} of S of minimal cardinality.

Proof: Sketch: Consider two different resolved refinements S_1 and S_2 of S, both of minimal cardinality. Divide proof into two cases. 1) ($supp_A(S_1) \neq supp_A(S_2)$ 2) $supp_A(S_1) = supp_A(S_2)$, $supp_B(S_1) = supp_B(S_2)$

Exercise 2. Match Refinement Example

Given Sequences A=AAGCGCCCGCG and B=AAGCGGGGCCCGCG and the projection maps:

$\alpha_{S_1}[0,5] \to [0,5]$	$\beta_{S_1}[0,5] \rightarrow [0,5]$
$\alpha_{S_2}[2,5] \rightarrow [11,14]$	$\beta_{S_2}[11, 14] \rightarrow [2, 5]$
$\alpha_{S_3}[8,11] \rightarrow [2,5]$	$\beta_{S_3}[2,5] \to [8,11]$
$\alpha_{S_4}[5,11] \rightarrow [8,14]$	$\beta_{S_4}[8,14] \rightarrow [5,11]$

a) Draw the two sequences and their corresponding segment matches.

b) Compute the minimal resolved refinement by applying the algorithm from the lecture.