Published online 28 January 2013

Nucleic Acids Research, 2013, Vol. 41, No. 7 e78
doi:10.1093/nar/gkt005

Fast and accurate read mapping with approximate
seeds and multiple backtracking

Enrico Siragusa'%*, David Weese' and Knut Reinert’

1Depar‘cment of Mathematics and Computer Science, Freie Universitat Berlin, Takustr. 9, 14195 Berlin, Germany
and ?Max Planck Institute for Molecular Genetics, lhnestr. 63-73, 14195 Berlin, Germany

Received July 12, 2012; Revised November 16, 2012; Accepted December 28, 2012

ABSTRACT

We present Masai, a read mapper representing the
state-of-the-art in terms of speed and accuracy. Our
tool is an order of magnitude faster than RazerS 3
and mrFAST, 2-4 times faster and more accurate
than Bowtie 2 and BWA. The novelties of our read
mapper are filtration with approximate seeds and a
method for multiple backtracking. Approximate
seeds, compared with exact seeds, increase filtra-
tion specificity while preserving sensitivity. Multiple
backtracking amortizes the cost of searching a
large set of seeds by taking advantage of the repeti-
tiveness of next-generation sequencing data.
Combined together, these two methods significantly
speed up approximate search on genomic data sets.
Masai is implemented in C++ using the SegAn
library. The source code is distributed under the
BSD license and binaries for Linux, Mac OS X and
Windows can be freely downloaded from http://
www.seqan.de/projects/masai.

INTRODUCTION

Next-generation sequencing allows to produce billions of
base pairs within days in the form of reads of length
100bp and more. It is an invaluable technology for a
multitude of applications in biomedicine, e.g. detection
of SNPs and large genomic variations, targeted or
de novo genome or transcriptome assembly, isoform
prediction and quantification, identification of transcrip-
tion factor binding sites or methylation patterns. In many
of these applications, mapping sequenced reads to their
potential origin in a reference genome is the first funda-
mental step preceding downstream analyses.

Because of sequencing errors and genomic variations,
not all reads occur exactly in a reference genome.
Therefore, approximate occurrences must be considered,
and algorithms for approximate string matching tolerating
mismatches and indels must be applied to solve the
problem. Furthermore, because of homologous and low

complexity regions, not all reads occur uniquely in a
reference genome. Therefore, in some applications, e.g.
CNVs calling, all approximate occurrences that could be
potential origins must be considered.

Previous work

All current read mappers can be broadly classified as
best-mappers or all-mappers. Tools in the first class aim
at finding the best mapping location for a read according
to a scoring scheme eventually taking base quality values
into account, whereas those in the second class aim at
enumerating a comprehensive set of locations.

Most prominent best-mappers are based on backtracking
algorithms for approximate string matching (1). Substrings
of the reference genome within an absolute number of
errors from a read are recursively enumerated using a
suffix or prefix tree of the reference genome. As the time
complexity of backtracking grows exponentially with the
absolute number of errors considered, this method alone
is impractical when mapping reads whole reads with
moderate error rates. Hence, popular best-mappers (2—4)
apply heuristics to reduce and prioritize enumeration and
are optimized to return one or a few best mapping locations.

Conversely, most prominent all-mappers are based on
filtering algorithms for approximate string matching (1).
Seeds are sampled from given reads and used as anchors
to quickly determine, with the help of an index, locations
of the reference genome candidate to contain approximate
occurrences. Each candidate location is subsequently
verified with an online method (5). Increasing the error
rate in filtering algorithms leads to a decrease of the
seed length, which in turn deteriorates filtration efficiency.
Current all-mappers (6-9) are usually slower than
best-mappers, but conversely they are able to report all
asked mapping locations in reasonable time.

Our contribution

We present Masai, a read mapper that combines for the
first time filtering with backtracking. Our filtering approach
is based on non-heuristic and full-sensitive filtration
strategies using exact and approximate seeds, which are
searched in the reference genome via backtracking.

*To whom correspondence should be addressed. Tel: +49 3083 875 244; Fax: +49 3083 875 218; Email: enrico.siragusa(@ fu-berlin.de

© The Author(s) 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

£T0Z ‘¥/T 8UNC U0 UIZIpawuewn g4uljleg N4 2 /610'seuno(pioxo feu//:dny wo.j papeo umod

http://nar.oxfordjournals.org/

e78 Nucleic Acids Research, 2013, Vol. 41, No. 7

Approximate seeds, compared with exact seeds, increase
filtration specificity while preserving sensitivity. Moreover,
we introduce a multiple backtracking method, which speeds
up filtration by searching all seeds simultaneously with the
help of an additional index. Combined together, these
methods yield a flexible and efficient filter that significantly
speeds up approximate search on genomic data sets.
Masai targets all-mapping, but eventually it can be used
as a best-mapper achieving even better runtimes. We ex-
tensively compared Masai with popular read mappers on
simulated and real data sets. Compared with considered
all-mappers, Masai is an order of magnitude faster and
has comparable sensitivity. In addition, Masai is more
accurate than considered best-mappers and 2-4 times
faster than Bowtie 2 (2) and BWA (3). Masai is imple-
mented in C++ using the SeqAn library and distributed
under the BSD license. It can be downloaded from http://
www.seqan.de/projects/masai.

MATERIALS AND METHODS

To map reads to a reference genome, we proceed as follows.

We first construct a conceptual suffix tree of the reference
genome, store it on disk and reuse it for each read mapping
job. Any data structure equivalent to the generalized suffix
tree in terms of allowing a top-down traversal can be used
to this intent. We implemented a generic algorithm using
the suffix array (10), the enhanced suffix array (Esa) (11)
and the FM-index (12).

At mapping time, we choose a filtration strategy accord-
ing to the reference genome and the specified error rate.
Our filtration strategies are based on (13), make use of
exact and approximate non-overlapping seeds and are
guaranteed to be full-sensitive by the pigeonhole principle.
In Figure 1, we show an example providing two alterna-
tive filtration strategies.

Therefore, we partition all reads and their reverse com-
plements in non-overlapping seeds and subsequently
arrange all seeds in a conceptual radix tree. The time
spent to construct the radix tree is easily justified, as the
tree allows us to perform multiple backtracking. We
indeed apply our multiple backtracking algorithm to the
radix tree, to search simultaneously all seeds in the suffix
tree of the reference genome.

Finally, we perform seed extension on each seed
reported by the multiple backtracking algorithm. We
extend both ends of each seed using a banded version of
Myers bit-vector algorithm (14) presented in (6).

(@)
" GCTNITGGGICATTIATGGIC- CATITTTT|
M M MR N M DN M N G MG MG

9 GCTATG-GCATTGTGGCCCATTTAT

(b)
7 GCTNTGGGICATTATGGIC=CATTTTT
B9 P00 TP VI CVTVTIVTIOTD

9 GCTATG-GCATTGTGGCCCATTTAT

Figure 1. Filtration strategies. A read r occurs in the reference genome
g within edit distance 5. (a) If we partition r in six seeds, at least one seed
(in white) occurs exactly in g. (b) Alternatively, if we partition r in three
seeds, at least one seed (in white) occurs within edit distance 1 in g.

PAGE2 oF 8

In the following of this section, we give a detailed ex-
planation of each mapping step.

Seeds

We now consider formally the read mapping problem.
Given a reference genome g, a set of reads R and an
absolute number of errors k consisting of indels and
mismatches, for each read r € R, find all mapping loca-
tions where r approximately occurs in g within k errors.

Exact seeds
A simple solution to the problem is provided by a filtering
algorithm proposed in (15), which reduces an approximate
search into smaller exact searches. Each read r is parti-
tioned into k+/ non-overlapping seeds, which are
searched in g with the help of an index. As each edit op-
eration can affect at most one seed, for the pigeonhole
principle, each approximate occurrence of r in g contains
an exact occurrence of some seed. However, the converse
is not true; consequently, we must verify whether any can-
didate location induced by an occurrence of some seed
corresponds to an approximate occurrence of r in g.
Filtration specificity in terms of candidate locations to
verify is strongly correlated to seed length. As we want to
maximize the length of the shortest seed, we let the
minimum seed length be ||r|/(k+1)]. If we want to
improve filtration specificity by increasing seed length,
we resort to approximate seeds.

Approximate seeds

A more involved filtering algorithm proposed in (13)
reduces an approximate search into smaller approximate
searches. We partition r into s < k+1 non-overlapping
seeds. According to the pigeonhole principle, each ap-
proximate occurrence of r in g then contains an approxi-
mate occurrence of some seed within distance Lk/sJ.

Moreover, we search (kK mod s)+1 seeds within distance
|k/s| and the remaining seeds within distance |k/s| — 1.
To prove full sensitivity, it suffices to see that, if none of
the seeds occurs within its assigned distance, the total
distance must be at least s- |_k/sJ+(k mod s)+1 = k+1.
Hence, all approximate occurrences of r in g within
distance k will be found.

Seeds are searched approximately by backtracking on a
suffix tree. We will introduce two efficient multiple back-
tracking algorithms to search exactly or approximately a
set of seeds.

Filtration strategies

With approximate seeds, we are free to choose the number
of seeds s, which in turn enforces the minimum seed length
1 to be | |r|/s]. Or vice versa, we fix 1, which enforces s to
be |[|r|//]. The resulting filter is flexible, indeed by
increasing | filtration becomes more specific at the
expense of a higher filtration time.

The optimal seed length / depends on the reference
genome as well as on read length and the absolute
number of errors. When mapping current next-generation
sequencing data sets on short-to-medium length genomes,
e.g. bacterial genomes, exact seeds are still more efficient
than approximate seeds. Conversely on larger genomes,

£T0Z ‘¥/T 8UNC UO UIZIpawuewnH g4uljieg N4 2 /610'seuno(pioxo feu//:dny wolj papeo umod

http://www.seqan.de/projects/masai
http://www.seqan.de/projects/masai
http://nar.oxfordjournals.org/

PAGE3 0F 8

e.g. mammalian genomes, approximate seeds outperform
exact seeds by an order of magnitude. Filtration results
are provided in the Supplementary Table S6.

Indices

We make use of two fundamental data structures, radix
and suffix trees. Here, we present these indices and give
most important implementation details.

Radix tree

The radix tree (16) is a lexicographically ordered tree data
structure representing a set of strings. It can be built in
time and space linear in the total length of the strings.
Assume w.l.o.g. that each string in the set is padded
with a distinct terminator symbol, not being part of the
string alphabet. The radix tree has one node designated as
the root and one leaf per string in the set. Every internal
node has more than one child, and edges are labeled with
non-empty strings. Each path from the root to an internal
node spells a different substring. Consequently, prefixes
common to distinct strings are compressed.

Suffix tree

The suffix tree (17) of a string is the radix tree of all the
suffixes of the string itself. It can be built in time and space
linear in the length of the string (18).

The suffix tree is used for exact search. A pattern is
found by starting in the root node and following the
path spelling the pattern. If such path is found, each leaf
below the last traversed node points to a distinct occur-
rence of the pattern in the text.

Approximate search is performed on the suffix tree by
means of backtracking (19,20). A top-down traversal of the
suffix tree spells incrementally all substrings present in the
text. The distance between the pattern and the spelled text
is incrementally computed while traversing a branch of the
suffix tree. If the pattern approximately matches the spelled
text, each leaf below the last traversed node points to a
distinct approximate occurrence of the pattern in the text.
Conversely, if the remaining suffix of the pattern cannot
lead to any approximate occurrence, the branch is
pruned, and the traversal proceeds on the next branch.

Implementation

We implemented a generic suffix tree top-down traversal
on the suffix array (10), the Esa (11) and the FM-index
(12). The Esa preserves the asymptotic performances of
the suffix tree and consumes, as implemented in SeqAn,
13n bytes for a sequence of length n. Nevertheless, the
suffix array, despite consuming 57 bytes and being theor-
etically slower, always showed better performance than
the Esa (Supplementary Table S7). The FM-index impli-
citly represents a prefix trie in only 1.5#z bytes and provides
constant time node traversal while being slower than the
other two data structures.

We prefer the suffix array because it provides a good
compromise between speed and memory consumption,
but nevertheless leaves the possibility to choose among
the aforementioned data structures. We construct the
(generalized) suffix array using an adaptation of the DC7
algorithm (21) to multiple sequences. For construction of

Nucleic Acids Research, 2013, Vol. 41, No.7 e78

the Esa or FM-index, we additionally use the algorithms
proposed in (11,22) and (23). Similarly, to all read mappers
relying on an index of the reference genome, we build the
index of the reference genome only once, store it on disk
and reuse it for each mapping job.

We implemented a lazy radix tree based on the wotd-
algorithm (24), as a radix tree is a partial suffix tree only
containing certain suffixes. The radix tree is constructed in
linear time by subsequent radix sort steps. However, when
performing multiple backtracking with exact seeds, the radix
tree construction time dominates the overall filtration time.
Therefore, in this case, we resort to the g-gram index to
emulate the radix tree. We build the ¢g-gram index efficiently
and in linear time by bucket sort. Below depth ¢, the
properties of the radix tree are lost; however, multiple back-
tracking is still applicable.

Multiple backtracking

We now introduce a method for multiple off-line approxi-
mate string matching to search simultaneously a set of
patterns in a text. We start by introducing an algorithm
for multiple off-line exact string matching and later extend
it to approximate string matching.

For simplicity of exposition, we describe the algorithms
working on tries, although they are easily extendable to
work on trees. Hence, in the following, we assume the text
sequence and the set of patterns to be pre-processed re-
spectively, using a suffix trie G and a radix trie S. Given a
node x, we denote with label (x) the label of the edge
entering into x, with C(x) the set of children of x which
are internal nodes, with £(x) the set of children of x which
are leaves, and with L£(x) the set of leaves of the subtree
rooted in x. Note that entering edges of internal nodes are
labeled with alphabet symbols, while entering edges of
leaves are labeled with terminator symbols.

Exact search
Algorithm 1 takes as input two nodes g, s, respectively, of
G, S and reports all pairs of leaves (l,l5) € L(g) x L(s)
such that the path from s to / spells a prefix of the path
from g to /.

Consequently, by applying Algorithm 1 on the root
nodes of G, S, we obtain all pairs of leaves (/,/;) such
that the pattern pointed by /; occurs in the text at the
position pointed by /,.

Algorithm 1 Multiple exact search.

1: procedure SEARCH (g, s)

2 report £(g) x £(s)

3: for all ¢; € C(s) do

4: if 3¢, € C(g) : label(c,) = label(c) then
5: SEARCH (¢, C5)

6 end if

7: end procedure

Approximate search
Algorithm 2 takes an additional input argument &, which
denotes the maximum number of mismatches left and

£T0Z ‘¥/T 8UNC U0 UIZIpawuewn g4uljleg N4 2 /610'seuno(pioxo feu//:dny wo.j papeo umod

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/

e78 Nucleic Acids Research, 2013, Vol. 41, No.7

computes the union of all paths within k£ mismatches in the
subtrees rooted in g, s. It reports all pairs of leaves
(lg,ls) € L(r) x L(s) such that the path from s to /s spells
a prefix of the path from g to /, with at most kK mismatches.

Therefore, by applying Algorithm 2 on the root nodes
of G, S, we obtain all pairs of leaves (/g,/;) such that the
pattern pointed by /; occurs within & mismatches in the
text at the position pointed by /,.

Algorithm 2 Multiple approximate search.

1: procedure SEARCH (g, s, k)

2: if £ = 0 then

3: SEARCH (g, 5)

4: else

S report L£(g) x E(s)

6: for all ¢, € C(g) do

7: for all ¢; € C(s) do

8: if label(c,) = label(cy) then
9: SEARCH (cg, Cs, k)

10: else

11: SEARCH (cg, €5, kK — 1)
12: end if

13: end if

14: end procedure

For k =0, lines 5-12 of Algorithm 2 are equivalent to
Algorithm 1. However, Algorithm 1 is preferred to
Algorithm 2 because it traverses only edges
spelling common strings instead of all pairs of edges,
and it is thus more efficient. Figure 2 depicts a run of
Algorithm 2.

Algorithm 2 only considers mismatches, but it can be
extended to allow indels, e.g. similarly to (13). In
Masai, Algorithm 2 is implemented only for mismatches,
consequently full sensitivity is not attained when
using approximate seeds and considering mapping loca-
tions with indels. However, in the ‘Results’ section, we
show that such implementation detail sacrifices <1%
sensitivity.

Seed extension

We use a banded version of Myers bit-vector algorithm
(14) already presented in (6). Myers’ algorithm is an
efficient dynamic programming (DP) alignment algorithm
(25) for edit distance. Instead of computing DP cells
one after another, it encodes the whole DP column in
two bit vectors and computes the adjacent column in a
constant number of 12 logical and 3 arithmetical oper-
ations. We implemented a bit-parallel version that
computes only a diagonal band of the DP matrix and
is faster and more specific than the original algorithm by
Myers. More details can be found in the Supplementary
Section S2.

However, differently from (6), instead of performing a
semi-global alignment to verify a parallelogram surround-
ing the seed, we perform a global alignment on both ends
of a seed. Given a seed occurring with e errors, we first
perform seed extension on the left side within an error

PAGE 4 OF 8
(a) (b) (c) {g.s.1}
@ P .
G G G=G
1
@ @ {h,t, 1}
7\
G G T G=G G£T
4 S
{i,u, 1} {i, w}
1N |
C G T T AG C£T GéTTT G=G
'd k N RS
{12, v} {J,v} {k/,vs\l} .y}
C A#T G£T

hdb boo

Figure 2. Multiple backtracking. (a) A part of the suffix trie represent-
ing the text GGTAACGGTGCGGGC (Supplementary Figure S1).
Numbers on the leaves are suffix positions in the text, whereas letters
on the inner nodes are arbitrary and serve to distinguish nodes from
each other. (b) The trie representing the set of patterns {GGTT, GTAT,
GTGG}, respectively numbered {0, 1, 2}. Labels on the leaves show
pattern numbers, whereas labels on the inner nodes are again arbitrary
identifiers. (¢) Recursive calls performed by Algorithm 2 called with
arguments {g, s, 1}. Edges represent comparisons performed by
Algorithm 2 at line 10 or by Algorithm 1 at line 6, nodes with curly
brackets represent recursive calls, rectangular leaves represent approxi-
mate matches reported. In this example, pattern numbered 0 (GGTT)
matches the text twice, at positions 0 and 6, within 1 mismatch. For
simplicity, we omitted terminator symbols in the picture.

threshold of k& — e errors. Only if the seed extension on
the left side succeeds, we perform a seed extension on
the right side within the remaining error threshold.
Moreover, we first compute the longest common prefix
on each side of the seed and let the global alignment al-
gorithm start from the first mismatching positions. We
observed that this approach is up to two times faster
than (6).

RESULTS

We thoroughly compared Masai with the best-mappers
Bowtie 2, BWA and Soap 2 as well as with the all-mappers
RazerS 3, Hobbes, mrFAST and SHRiMP 2. We remark
that Bowtie 2, BWA, Soap 2 and SHRiMP 2 rely on
scoring schemes taking into account base quality values,
whereas Masai, RazerS 3, Hobbes and mrFAST use edit
distance. When relevant, read mappers that accept an
absolute number of errors (Masai, mrFAST, Hobbes
and Soap 2) or an error rate (RazerS 3) were configured
accordingly. We used default parameters, except where
stated otherwise (Supplementary Section S3).

We performed runtime experiments on real data. All
read sets are given by their SRA/ENA ID. As references,
we used whole genomes of Escherichia coli (NCBI
NC _000913.2), Caenorhabditis elegans (WormBase
WS195), Drosophila melanogaster (FlyBase release 5.42)
and Homo sapiens (GRCh37.p2). The mapping times
were measured on a cluster of nodes with 72 GB RAM
and 2 Intel Xeon X5650 processors running Linux 3.2.0.
For running time comparison, we ran the tools using a
single thread and used local disks for I/O.

Rabema benchmark

We first used the Rabema benchmark (26) (v1.1) for a
thorough evaluation and comparison of read mapping

£T0Z ‘¥/T 8uUNC U0 UIZIpawuewn g4uljleg N4 2 /610'seuno(piojxo feu//:dny wo.j papeo umod

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/

PAGE 50F 8

Table 1. Rabema benchmark results

Nucleic Acids Research, 2013, Vol. 41, No.7 e78

method all all-best

any-best precision recall

Masai
Bowtie 2
BWA
Soap 2

best-mappers

Masai
Bowtie 2
BWA
RazerS 3
Hobbes
mrFAST
SHRiMP 2

all-mappers

Rabema scores in percentage (average fraction of edit distance locations reported per read). Large numbers show total scores in
each Rabema category, and small numbers show the category scores separately for reads with (0 ! 2) errors.

sensitivity. Similarly to (2), we used the read simulator
Mason (27) with default profile settings to simulate from
each whole genome 100k reads of length 100 bp having
sequencing errors distributed like in a typical [llumina run
(Supplementary Section S4).

The benchmark contains the categories all, all-best,
any-best, precision and recall. In the categories all,
all-best and any-best, a read mapper had to find all, all
of the best or any of the best edit distance locations for
each read. The categories precision and recall required a
read mapper to find the original location of each read,
which is a measure independent of the used scoring
model, e.g. edit distance or quality based. A read is
mapped correctly if the mapper reported its original
location, and it is mapped uniquely if the mapper
reported only one location. Rabema defines recall to be
the fraction of reads that were correctly mapped and pre-
cision to be the fraction of uniquely mapped reads that
were mapped correctly.

The benchmark was performed for an error rate of 5%,
which corresponds to edit distance 5 for reads of length
100 bp. Therefore, we built a Rabema gold standard for
each data set by running RazerS 3 in full-sensitive mode
up to edit distance 5. We further classified mapping loca-
tions in each category by their edit distance.

For a more fair and thorough comparison, we also
configured BWA and Bowtie 2 as all-mappers (Soap 2
could not be configured accordingly). To this extent, we
parametrized them to be highly sensitive and output all
found mapping locations. As BWA and Bowtie 2 were not
designed to be used as all-mappers, they spent much more
time than proper all-mappers, i.e. up to 3h in a run
compared with several minutes. The aim here is to inves-
tigate read mapping sensitivity, and therefore we do not
report running times.

Results for H. sapiens are shown in Table 1. Additional
results for E. coli, C. elegans and D. Melanogaster are
shown in the Supplementary Tables S3, S4, S5.

345

Best-mappers

Masai showed the best recall values, not loosing >3.3%
recall on edit distance 5. Conversely, recall values of BWA
and Bowtie 2 dropped significantly with increasing edit
distance up to loosing 15.4 and 11.5%, respectively, on
edit distance 5. As expected, Soap 2 turned out to be in-
adequate for mapping reads of length 100 bp at this error
rates.

Precision values have less variance than recall values.
Masai showed the best precision values with 97.8%,
followed by Soap 2 with 97.7%, and BWA with 97.5%.
Interestingly, Bowtie 2 showed the worst precision values,
loosing up to 5.6% on edit distance 5.

All-mappers

As expected, RazerS 3 showed full sensitivity and
mrFAST lost only a minimal percentage of mapping lo-
cations. Overall, Masai did not loose >0.1% of all
mapping locations. In particular, Masai was full sensitive
for low-error locations, and it lost only a small percentage
of high-error locations, i.e. its loss was limited to 0.1 and
1.4% of mapping locations at edit distance 4 and 5.

On the other side, BWA and Bowtie 2 missed 35 and
45% of all mapping locations at edit distance 5, and their
recall values as all-mappers did not substantially increase.
Likewise, SHRiIMP 2 could not enumerate all mapping
locations, although its recall values were good. Again
Hobbes had the worst performance.

We remark that Masai is not full sensitive whenever
approximate seeds are used, e.g. on H. sapiens. Indeed,
Masai lost 0.1% overall sensitivity in respect to RazerS
3. Conversely, full sensitivity is attained whenever
exact seeds are used, e.g. on E. coli, C. elegans and
D. Melanogaster (Supplementary Tables S3, S4, S5). In
general, RazerS 3 should be used when full sensitivity is
required, i.e. for read mapper benchmarking. However,
our results show that Masai can replace RazerS 3 or
mrFAST as an all-mapper in practical setups.

£T0Z ‘¥/T 8UNC U0 UIZIpawuewn g4uljleg N4 2 /610'seuno(pioxo feu//:dny wo.j papeo umod

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/

e78 Nucleic Acids Research, 2013, Vol. 41, No. 7

Table 2. Variant detection results

PAGE 6 OF 8

(0,0) (2,0 (4,0) (1,1) (1,2) 0,3)

method prec. recl. prec. recl. prec.

recl. prec. recl. prec. recl. prec. recl.

Masai

BWA

best-mappers

Bowtie2 ... 920 926
85 1974 80 3
Soap2 82 9 90.6 -

825

Masai
RazerS 3
Hobbes
mrFAST
SHRiMP 2

all-mappers

We show the percentages of found origins (recall) and fraction of unique reads mapped to their
origin (precision) classed by reads with s SNPs and i indels (s,i).

Variant detection

The second experiment analyses the applicability of Masai
and other read mappers in genomic variation pipelines.
Similarly to (9), we simulated from the whole human
genome 5 million reads of length 100bp containing
sequencing errors, SNPs and indels such that each read
had an edit distance of at most 5 to its genomic origin. To
distribute sequencing errors according to a typical
Illumina run, we used the read simulator Mason. The
reads were grouped according to the numbers of contained
SNPs and indels, where the class (s,i) consists of all reads
with s SNPs and 7 indels. We mapped the reads with each
tool and measured its sensitivity in each class.

We say that a read is mapped correctly if a mapping
location has been reported within 10bp of its genomic
origin. It is considered to map uniquely if only one
location was reported by the mapper. For each class, we
define recall to be the fraction of reads that were correctly
mapped and precision to be the fraction of uniquely
mapped reads that were mapped correctly. Table 2
shows the results for each read mapper and class.

Best-mappers

Among best-mappers, Masai showed the highest precision
and recall in all classes. In particular, Masai did not loose
>3.2% recall in class (4,0), whether Bowtie 2 and BWA
lost 17.5 and 14.9%, respectively, and Soap 2 was not able
to map any read.

Interestingly, we observed that recall values of Bowtie 2,
BWA and Soap 2 were negatively correlated with the
amount of genomic variation. For instance, in the
Rabema benchmark, Bowtie 2 lost 7.2 and 11.5%, respect-
ively, of mapping locations at distance 4 and 5, but in this
experiment, it lost 17.5% recall in class (4,0). We noticed a
similar trend for BWA and Soap 2. These tools rely on
quality values to guess the best mapping location for a
read and tend to prefer alignments, which can be ex-
plained by sequencing errors instead of true genomic vari-
ations. The low performance of Soap 2 is also owing to its

limitation to at most 2 mismatches and no support for
indels.

All-mappers

Looking at all-mappers results, Masai showed 100% pre-
cision and recall in all classes, except for classes (2,0) and
(1,1) where it lost only 0.1 and 0.7% recall. Masai is there-
fore roughly comparable with the full-sensitive read
mappers RazerS 3 and mrFAST. SHRiMP 2 showed
100% precision in all classes but lost between 0.3 and
0.8% recall in each class. Hobbes had the lowest perform-
ance among all-mappers. It appears to have problems with
indels; indeed, it lost 9.5% recall in class (0,3).

Performance on real data

In the last experiment, we focused on comparing read
mappers performance on real data. To this end, we
mapped the first I0M x 100bp reads from an Illumina
lane of E. coli (ERR022075, Genome Analyzer IIx),
D. melanogaster (SRR497711, HiSeq 2000), C. elegans
(SRR065390, Genome Analyzer II) and H. sapiens
(ERRO12100, Genome Analyzer IT). To measure scalabil-
ity, we also mapped the full 60 M x 100 bp (ERR012100)
and 150 M x 100 bp (ERR161544, HiSeq 2000) H. sapiens
data sets. Whenever possible, we asked mappers to map
reads within edit distance 5. We measured running times,
peak memory consumptions, mapped reads and Rabema
any-best scores.

We could not measure precision and recall values, as
real reads have unknown origins. Therefore, for the evalu-
ation, we adopted the commonly used measure of percent-
age of mapped reads, i.e. the fraction of reads for which
the read mapper reports a mapping location. However, as
some mappers report mapping locations without con-
straints on the number of errors, we also included
Rabema any-best scores. The Rabema any-best bench-
mark assigns a point for a read if the mapper reports at
least one mapping location with the optimal (minimum)
number of errors. Final Rabema any-best scores are
normalized by the number of reads.

£T0Z ‘¥/T 8UNC U0 UIZIpawuewn g4uljleg N4 2 /610'seuno(pioxo feu//:dny wo.j papeo umod

http://nar.oxfordjournals.org/

PAGE 7 0F 8

Table 3. Runtime results

Nucleic Acids Research, 2013, Vol. 41, No.7 e78

dataset SRR065390 ERR012100
C. elegans H. sapiens
time memory Rabema any-best mapped reads time memory Rabema any-best mapped reads
method [minis] [Mb] (%] (%] [min:s] [Mb] (%] (%]
£ Masai 310 2936 |OONOMMENERINN 8949 o) B30 %68 22:35 19711 93.76 1% $84 0
g Bowtie2 24:14 135 9258 T4 s s O741 3180 Sheetbao] 9572 oiss orte o3as
% BWA 25:53 325 89.70 85.8 89.33 D0i s sos S0:58 4475 MO ii2] 0353 o151 i oves
< Soap2 437 748 [0SR MMESIEIEN 8595 10 N3 1111 5357 [0S0 MEMISISERRN 8073 % 2 N
Masai 10:49 2821 - 89.49 01 B0 8638 307:16 20130 - 93.76 139 S8 00
é Razer$S 3 21:18 11489 89.49 DOl 5380 86 3653:03 17298 93.77 o s ove
T oHobbes 1746 3885 | 8977 B W WE 5034 53 5N DO 23927 7iess - 5535 50 4 02
= mFAST 6741 875 |NOOMOMEEERIEEN 5949 Do) B0t 446225 929 93.75 155 8784 0
SHRIMP2 541:20 2735 m 91.91 471 812 8.5 - - - -

Results of mapping 10 M x 100 bp Illumina reads. Mapped reads: In large, we show the percentage of mapped reads and in small the cumu-

0 1% 2%

lative percentage of reads that were mapped with (3% v o

) errors. Rabema any-best: In large, we show the percentage of reads mapped with

the minimal number of errors (up to 5%) and in small the percentage of reads that were mapped with (" 1 2“/") errors. Remarks: SHRiIMP 2

3% 4% 5%

was not able to map the H. sapiens data set within 4 days. Hobbes constantly crashed and was not able to map completely neither the

C. Elegans nor the H. sapiens data set.

In this evaluation, we are interested on the capability of
the mapper to retrieve the location of a single read without
the help of read pairs, which can of course disambiguate
mapping locations of the partner.

Results for C. elegans and H. sapiens are shown in
Table 3. Additional results for E. coli, D. melanogaster
and two large (60M and 150 M reads) H. sapiens data
sets are shown in the Supplementary Table S1.

Best-mappers

On the C. elegans data set, Masai was 7.7 times faster than
Bowtie 2, 8.2 times faster than BWA and 1.5 times faster
than Soap 2. On the H. sapiens data set, Masai was 2.6
times faster than Bowtie 2, 3.6 times faster than BWA but
2.1 times slower than Soap 2. On one hand, Soap 2 was
not able to map a consistent fraction of reads because of
its limitation to two mismatches. On the other hand,
Bowtie 2 reported more mapped reads than Masai but,
taking any-best scores into account, it reported less
mapping locations than Masai. In fact, Bowtie 2 uses a
scoring scheme based on quality values and does not im-
pose a maximal error rate threshold. On the C. elegans
and H. sapiens data sets, Bowtie 2 missed 22.0 and
20.7% of reads, respectively, mappable at edit distance 5.

All-mappers

On the C. elegans data set, Masai was 2.0 times faster than
RazerS 3, 10.9 times faster than Hobbes, 6.3 times faster
than mrFAST and 50.1 times faster than SHRiIMP 2.
Hobbes constantly crashed and mapped less reads than
all other mappers in this category. Likewise for Bowtie
2, also SHRiIMP 2 does not impose a maximal error rate
threshold and reported more mapped reads than Masai.
However, its Rabema any-best score was inferior to

Masai. This could be owing to the use of a different
scoring scheme where two mismatches cost less than
opening a gap. Anyway, this hypothesis does not explain
why SHRiMP 2 did not report some mapping locations at
distance 0.

On the H. sapiens data set, Masai was 11.9 times faster
than RazerS 3, 14.6 times faster than mrFAST and 7.6
times faster than Hobbes. The current implementation
of Hobbes often crashed and mapped only half of the
reads. SHRiIMP 2 was not able to map the H. sapiens
data set within 4 days.

Memory requirements

In all, 20 GB of main memory are required to map a block
of 10M x 100 bp reads on H. sapiens using a suffix array
index. The reference genome consumes 3 GB, its suffix
array index 15GB and 10 M reads along with the radix
tree ~2GB. Alternatively, the FM-index lowers the
memory consumption of H. sapiens index to 4 GB.
Therefore, 9 GB of main memory are sufficient to map
10M x 100bp reads (Supplementary Table S7). Suffix
array indices of C. elegans, D. melanogaster and E. coli
are not problematic in size, as they consume only 479 M B,
575MB and 23 MB.

On low memory machines and clusters, larger read set
can be always processed in blocks of appropriate size.
Thus, the standard memory requirement for H. sapiens
is 20 GB of main memory. Nonetheless, we mapped two
huge data sets at once, merely to measure scalability. On
the full ERR012100 data set (60 M x 100 bp reads), Masai
required 31 GB of main memory, whereas on the
ERRI161544 H. sapiens data set (150 M x 100 bp reads),
Masai required 52 GB of main memory (Supplementary
Table S2).

£T0Z ‘¥/T 8UNC U0 UIZIpawuewn g4uljleg N4 2 /610'seuno(pioxo feu//:dny wo.j papeo umod

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/

e78 Nucleic Acids Research, 2013, Vol. 41, No. 7

DISCUSSION

We showed that, on one hand, Masai is faster and more
accurate than the best-mappers Bowtic 2 and BWA,
whereas on the other hand, Masai is slightly slower but
substantially more accurate than Soap 2. Masai’s accuracy
becomes considerable in presence of genomic variation;
therefore, we strongly advise to use Masai in small and
large genomic variation pipelines.

At the same time, we showed that Masai is significantly
faster than any other all-mapper while being almost full
sensitive. Consequently, Masai brings all-mapping within
feasible times, although with a higher memory footprint.

We finally remark that performance on short reference
genomes (Supplementary Table S1) is relevant for
metagenomics. On E. coli, Masai outperforms Bowtie 2
and BWA by an order of magnitude. Therefore, we
strongly advise to use Masai also in metagenomic
pipelines.

Masai is implemented in C++ using the SeqAn library.
The source code is distributed under the BSD license, and
binaries for Linux, Mac OS X and Windows can be freely
downloaded from http://www.seqan.de/projects/masai.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1-7 and Supplementary Figures 1-3.

ACKNOWLEDGEMENTS

The authors thank Manuel Holtgrewe for his joint work
on experimental evaluations. They are grateful to Jochen
Singer for providing them with a generic FM-index
implementation.

FUNDING

International Max Planck Research School for
Computational Biology and Scientific Computing (to
E.S.); the Federal Ministry of Education and Research
[16V0080 to D.W.]. Funding for open access charge:
International Max Planck Research School for
Computational Biology and Scientific Computing.

Conflict of interest statement. None declared.

REFERENCES

1. Navarro,G., Baeza-Yates,R.A., Sutinen,E. and Tarhio,J. (2001)
Indexing methods for approximate string matching. /EEE Data
Eng. Bull., 24, 19-27.

2. Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read
alignment with Bowtie 2. Nat. Methods, 9, 357-359.

3. Li,H. and Durbin,R. (2009) Fast and accurate short read
alignment with Burrows-Wheeler transform. Bioinformatics, 25,
1754-1760.

4. Li,R., Yu,C., Li,Y., Lam,T.-W., Yiu,S.-M., Kristiansen,K. and
Wang,J. (2009) SOAP2: an improved ultrafast tool for short read
alignment. Bioinformatics, 25, 1966-1967.

PAGE 8 OF 8

5. Navarro,G. (2001) A guided tour to approximate string matching.
ACM Comput. Surv., 33, 31-88.

6. Weese,D., Holtgrewe,M. and Reinert,K. (2012) RazerS 3: faster,
fully sensitive read mapping. Bioinformatics, 28, 2592-2599.

7. Ahmadi,A., Behm,A., Honnalli,N., Li,C., Weng,L. and Xie,X.
(2012) Hobbes: optimized gram-based methods for efficient read
alignment. Nucleic Acids Res., 40, e41.

8. Alkan,C., Kidd,J.M., Marques-Bonet,T., Aksay,G., Antonacci,F.,
Hormozdiari,F., Kitzman,J.O., Baker,C., Malig,M., Mutlu,O. et al.
(2009) Personalized copy number and segmental duplication maps
using next-generation sequencing. Nat. Genet., 41, 1061-1067.

9. David,M., Dzamba,M., Lister,D., Ilie,L. and Brudno,M. (2011)
SHRiIMP2: sensitive yet practical SHort Read Mapping.
Bioinformatics, 27, 1011-1012.

10. Manber,U. and Myers,G. (1990) Suffix arrays: a new method for
on-line string searches. In: SODA, pp. 319-327.

11. Abouelhoda,M., Kurtz,S. and Ohlebusch,E. (2004) Replacing
suffix trees with enhanced suffix arrays. J. Discrete Algorithms,
2(1), 53-86.

12. Ferragina,P. and Manzini,G. (2001) An experimental study of
an opportunistic index. In: Proceedings of the Twelfth Annual
ACM-SIAM Symposium on Discrete Algorithms, Washington,
D.C., USA. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, pp. 269-278.

13. Navarro,G. and Baeza-Yates,R. (2000) A hybrid indexing method
for approximate string matching. J. Discrete Algorithms, 1,
205-239.

14. Myers,G. (1999) A fast bit-vector algorithm for approximate
string matching based on dynamic programming. J. ACM, 46,
395-415.

15. Baeza-Yates,R.A. and Navarro,G. (1999) Faster approximate
string matching. Algorithmica, 23, 127-158.

16. Morrison,D.R. (1968) PATRICIA-Practical algorithm to retrieve
information coded in alphanumeric. J. ACM, 15, 514-534.

17. Weiner,P. (1973) Linear pattern matching algorithms. In: SWAT
(FOCS) IEEE. 1IEEE Computer Society, Los Alamitos, CA,
USA, pp. 1-11.

18. Ukkonen,E. (1995) On-line construction of suffix trees.
Algorithmica, 14, 249-260.

19. Ukkonen,E. (1993) Approximate string-matching over suffix trees.
In: Apostolico,A., Crochemore,M., Galil,Z. and Manber,U. (eds),
Lecture Notes in Computer Science, Vol. 684. Springer Berlin
Heidelberg, Ukkonen, Esko, pp. 228-242.

20. Baeza-Yates,R.A. and Gonnet,G.H. (1999) A fast algorithm on
average for all-against-all sequence matching. In: SPIRE/CRIWG
IEEE. IEEE Computer Society Press, pp. 16-23.

21. Dementiev,R., Karkkdinen,J., Mehnert,J. and Sanders,P. (2008)
Better external memory suffix array construction. J. Exp.
Algorithmics, 12, 3.4:1-3.4:24.

22. Kasai,T., Lee,G., Arimura,H., Arikawa,S. and Park,K. (2001)
Linear-time longest-common-prefix computation in suffix arrays
and its applications. In: CPM. Springer-Verlag, London, UK,
pp. 181-192.

23. Grossi,R., Gupta,A. and Vitter,J.S. (2003) High-order
entropy-compressed text indexes. Proceedings of the 14th annual
ACM-SIAM symposium on Discrete algorithms, Society for
Industrial and Applied Mathematics SODA ’03, Philadelphia, PA
pp. 841-850.

24. Giegerich,R., Kurtz,S. and Stoye,J. (2003) Efficient
implementation of lazy suffix trees. Softw. Pract. Exper., 33,
1035-1049.

25. Needleman,S.B. and Wunsch,C.D. (1970) A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. J. Mol. Biol., 48, 443-453.

26. Holtgrewe,M., Emde,A.-K., Weese,D. and Reinert,K. (2011) A
novel and well-defined benchmarking method for second
generation read mapping. BMC Bioinformatics, 12, 210.

27. Holtgrewe,M. (2010) Mason—a read simulator for second
generation sequencing data. Technical report TR-B-10-06,
Institut fiir Mathematik und Informatik, Freie Universitit
Berlin.

£T0Z ‘¥/T 8UNC U0 UIZIpawuewn g4uljleg N4 2 /610'seuno(pioxo feu//:dny wo.j papeo umod

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://www.seqan.de/projects/masai
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt005/-/DC1
http://nar.oxfordjournals.org/

