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Abstract

The suffix tree is one of the most important data structures in string processing and comparative
genomics. However, the space consumption of the suffix tree is a bottleneck in large scale applica-
tions such as genome analysis. In this article, we will overcome this obstacle. We will show how
every algorithm that uses a suffix tree as data structure can systematically be replaced with an algo-
rithm that uses an enhanced suffix array and solves the same problem in the same time complexity.
The generic namenhanced suffix array stands for data structures consisting of the suffix array and
additional tables. Our new algorithms are not only more space efficient than previous ones, but they
are also faster and easier to implement.
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1. Introduction

The suffix tree is undoubtedly one of the most important data structures in string
processing. This is particularly true if the sequences to be analyzed are very large and do
not change. An example of prime importance from the field of bioinformatics is genome
analysis, where the sequences under consideration are whole genomes (the human genome,
for example, contains more than 80° base pairs).

The suffix tree of a sequenceis an index structure that can be computed and stored
in O(n) time and space [32], where= |S|. Once constructed, it can be used to efficiently
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Table 1
The suffix tree applications from [15] and the kinds of traversals they require

Application Type of tree traversal

Bottom-up  Top-down  Suffix-links

Supermaximal repeats
Maximal repeats Vv
Maximal repeated pairs N
Longest common substring 4
All-pairs suffix-prefix matching N
v
v

<L

Ziv—Lempel decomposition

Common substrings of multiple strings
Exact string matching

Exact set matching

Matching statistics

Construction of DAWGSs

LA

J
v

solve a “myriad” of string processing problems [3], and Gusfield devotes about 70 pages
of his book [15] to applications of suffix trees. These applications can be classified into the
following kinds of tree traversals:

e a bottom-up traversal of the complete suffix tree,
e atop-down traversal of a subtree of the suffix tree,
e atraversal of the suffix tree using suffix links.

Table 1 shows some of the suffix-tree applications discussed in [15] plus the kind of tra-
versal they use.

While suffix trees play a prominent role in algorithmics, they are not as widespread in
actual implementations of software tools as one should expect. There are two major reasons
for this:

(i) Although being asymptotically linear, the space consumption of a suffix tree is quite
large; even recently improved implementations of linear time constructions still require
20 bytes per input character in the worst case; see, e.g., [25].

(i) In most applications, the suffix tree suffers from a poor locality of memory reference,
which causes a significant loss of efficiency on cached processor architectures, and
renders it difficult to store in secondary memory.

These problems have been identified in several large scale applications like the repeat
analysis of whole genomes [27] and the comparison of complete genomes [8,17].

More space efficient data structures than the suffix tree exist. The most prominent one
is thesuffix array, which was introduced by Manber and Myers [29] and independently by
Gonnet et al. [13] under the name PAT array. The suffix array requires arytés in its
basic form and it can be constructed i time in the worst case by first constructing
the suffix tree ofS; see [15]. Very recently, it was shown independently and contempora-
neously in [19,21,23] that a direct linear time construction of the suffix array is possible.
However, at first glance, it seems that the suffix array has a disadvantage over the suffix
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tree: It is not clear that (and how) every algorithm using a suffix tree can be replaced with
an algorithm based on a suffix array solving the same problem in the same time complexity.
For example, using only the basic suffix array, it takés:@gn) time in the worst case to
answer decision queries of the type fsa substring of5?”, wherem = | P|. In this paper,

we will show that every algorithm using a suffix tree can be replaced with an equivalent
algorithm based on a suffix array and additional information. It will be demonstrated how
to efficiently solve all problems with enhanced suffix arrays that are usually solved by a
bottom-up or a top-down traversal of the suffix tree. Moreover, we will show how traversals
of the suffix tree that use suffix links can be simulated over an enhanced suffix array.

In Section 3, we treat applications (such as computing supermaximal repeats and maxi-
mal unique matches) that are solely based on the properties of the enhanced suffix array.

In Section 4, we will take the approach of Kasai et al. [20] one step further. They showed
that every bottom-up traversal of a suffix tree can be simulated on a suffix array enhanced
with the longest common prefix (Icp) information, but they did not take the information
of the child nodes of an internal node of the suffix tree into account. We will introduce
the concept ofcp-interval treesto remedy this. The Icp-interval tree of an enhanced suffix
array is only conceptual (i.e., it is not really built) but it allows us to simulate all kinds of
suffix tree traversals very efficiently.

With the help of the Icp-interval tree, it will be shown in Section 5 how to solve all
problems with enhanced suffix arrays that are usually solved by a bottom-up traversal of
the suffix tree. As examples, we show how to compute all maximal repeated pairs and
the Ziv—Lempel decomposition of a string. These application use the suffix array and the
Icp-table, both of which can be stored in Bytes.

In Section 6, we are concerned with problems that are usually solved by a top-down
traversal of the suffix tree. A prime example is exact pattern matching. Using an additional
table, Manber and Myers [29] showed that decision queries can be answeréa i O
logn) time in the worst case. However, nd#) time algorithm based on the suffix array
was known for this task. In this paper, we will show how decision queries can be answered
in optimal Q(m) time and how to find alf occurrences of a patte® in optimal Q(m + z)
time. This new result is achieved by using the basic suffix array enhanced with the Icp-table
and an additional table, called the child-table, that requirglsydes. Our new approach is
not confined to exact pattern matching. In general, we can simulate any top-down traversal
of the suffix tree by means of the enhanced suffix array. To further exemplify this, we will
show how to efficiently compute all shortest unique substrings of

In Section 7 we show how to incorporate the concept of suffix links (known from suffix
trees) into enhanced suffix arrays. To this end, we further enhance the suffix array with
an additional table, called the suffix link table, that stores the left and right boundaries of
suffix link intervals. This table can be stored in Bytes. As a corresponding application
we show how to compute matching statistics i time for a string of lengthn, using
the enhanced suffix array.

Section 8 presents implementation details that considerably reduce the space require-
ment. It will be shown that in practice both the Icp-table and the child-table can be stored
in n bytes, whereas the suffix link table requirest®ites. This space reduction entails no
loss of performance.
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Section 9 presents experimental results that show the practical usefulness of our algo-
rithms.

The last section concludes with a brief summary of the contributions of this article,
provides pointers to related work, and outlines an alternative approach to simulate a top
down traversal of the suffix tree.

Parts of this article appeared in [1] and [2].

2. Basic notions

Let X be a finite orderedlphabet. X* is theset of all strings over . We useX™ to
denote the seE™* \ {¢} of non-empty strings. Lef be a string of lengthS| = »n overX'. To
simplify analysis, we suppose that the size of the alphabet is a constant, ancktt23f.

The latter implies that an integer in the rari@er] can be stored in 4 bytes. We assume
that the special symbol $ is an element®f(which is larger then all other elements) but
does not occur irs. S[i] denotes theharacter at positioni in S, for 0<i < n. Fori < j,
S[i..j] denotes theubstring S starting with the character at positiband ending with the
character at positiof. The substring[i..j] is also denoted by theair (i, j) of positions.

A suffix treefor the stringsS is a rooted directed tree with exactly- 1 leaves numbered
0 ton. Each internal node, other than the root, has at least two children and each edge is
labeled with a nonempty substring 8. No two edges out of a node can have edge-labels
beginning with the same character. The key feature of the suffix tree is that for ary leaf
the concatenation of the edge-labels on the path from the root té &eadctly spells out
the strings;, whereS; = S[i..n — 1]$ denotes théth nonempty suffix of the string$,

0 <i < n. Fig. 1 shows the suffix tree for the striSg= acaaacatat.

The suffix array suftab of the string S is an array of integers in the range 019
specifying the lexicographic ordering of the+ 1 suffixes of the stringS$. That is,
Ssuttab[0], Ssuftab[1], - - - » Ssuftab[n] 1S the sequence of suffixes ¢f in ascending lexico-
graphic order. The suffix array requires dytes.

Theinverse suffix array suftab™! is a table of size + 1 such thasuftab~*[suftab[¢]] =
g for any 0< ¢ < n. suftab—! can be computed in linear time from the suffix array and
needs 4 bytes.

Fig. 1. The suffix tree foS = acaaacatat.
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The tablebwttab contains theBurrows and Wheeler transformation [6] known from
data compression. It is a table of size+ 1 such that for every, 0 <i < n, bwttab[i] =
S[suftab[i] — 1] if suftab[i] # 0. bwttab[i] is undefined ifsuftab[i] = 0. The tablebwttab
is stored im bytes and constructed in one scan over the suffix arrayi @me.

Thelcp-tableIcptab is an array of integers in the range OntoWe defindcptab[0] =0
andicptab[i] is the length of the longest common prefixafitan[i —1] aNdSsuftanfi], for 1 <
i < n. SinceSsuianfs) = $, We always havéeptab[rn] = 0. The Icp-table can be computed
as a by-product during the construction of the suffix array, or alternatively, in linear time
from the suffix array [20]. The Icp-table requires Bytes in the worst case.

3. Algorithmsbased on Icp-intervals
3.1. Motivation: repeat analysis and genome comparison

To start with, we will shed some light on the underlying problem. Repeat analysis
plays a key role in the study, analysis, and comparison of complete genomes. In the
analysis of a single genome, a basic task is to characterize and locate the repetitive ele-
ments of the genome. In the comparison of two or more genomes, a basic task is to find
similar subsequences of the genomes. This problem can also be reduced to the compu-
tation of certain types of repeats of the string that consists of the concatenated genomes;
cf. [8,17].

The repetitive elements of the human genome can be generally classified into two
large groups: dispersed repetitive DNA and tandemly repeated DNA. Dispersed repeti-
tions vary in size and content and fall into two basic categories: transposable elements
and segmental duplications [28]. Transposable elements belong to one of the following
four classes: SINEs (short interspersed nuclear elements), LINEs (long interspersed nu-
clear elements), LTR (long terminal repeats), and transposons. Segmental duplications,
which might contain complete genes, have been divided into two classes: chromosome-
specific and trans-chromosome duplications [30]. Tandemly repeated DNA can also be
classified into two categories: simple sequence repetitions (relativelyishoets such as
micro and minisatellites) and larger ones, which are called blocks of tandemly repeated
segments.

While bacterial genomes usually do not contain large parts of redundant DNA, the
genomes of higher organisms are often very repetitive. For example, 50% of the 3 bil-
lion basepairs of the human genome consist of repeats. Repeats also comprise 11% of the
mustard weed genome, 7% of the worm genome and 3% of the fly genome [28]. Clearly,
one needs extensive algorithmic support for a systematic study of repetitive DNA on a
genomic scale. The algorithms for this task usually use the suffix tree to locate repetitive
structures such as maximal or supermaximal repeats; see [15]. In this section we show how
to locate all supermaximal repeats, while Section 5.1 treats maximal repeated pairs. Let us
recall the definitions of these notions.

A pair of substringsk = ((i1, j1), (i2, j2)) is arepeated pair if and only if (i1, j1) #

(i2, j2) and S[i1..j1] = S[i2..j2]. The length of R is j1 — i1 + 1. A repeated pair
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((i1, j1), (i2, j2)) is calledleft maximal if S[iy — 1] # S[i> — 1]t andright maximal if
S[j1 + 1] # S[j2 + 1]. A repeated pair is calledhaximal if it is left and right max-
imal. A substringew of S is a (maximal) repeat if there is a (maximal) repeated pair
((i1, j1), (i2, j2)) such thato = S[i1..j1]. A supermaximal repeat is a maximal repeat that
never occurs as a substring of any other maximal repeat.

3.2. Thelcp-intervals

We start this subsection with the introduction of the first essential concept of this arti-
cle, namely Icp-intervals. Then we will derive two new algorithms that solely exploit the
properties of Icp-intervals. The algorithms are much simpler than the corresponding ones
based on suffix trees.

Definition 3.1. An interval[i..j1, 0< i < j < n, is anlcp-interval of Icp-value ¢ if

1. Icptab[i] < ¢,

2. Icptablk] > £ forall k withi + 1<k < J,

3. Icptab[k] = ¢ for at least oné with i +1 <k < j,
4. Icptab[j + 1] < £.

We will also use the shorthartdinterval (or ever?-[i..j]) for an Icp-intervali.. j] of lcp-
value?. Every indexk, i + 1 < k < j, with Icptab[k] = ¢ is called¢-index. The set of all
¢-indices of an¢-interval[i..j] will be denoted by¢Indices(, j). If [i..j] is an¢-interval
such thatw = S[suftab[i]..suftab[i] + ¢ — 1] is the longest common prefix of the suffixes
Ssuftabli]> Ssuftabli+1]» - - - » Ssuftab[ ] then[i..j] is called thew-interval.

| i suftab| Icptab| bwttab| Sqfabyi |

0 2 0 ¢| aaacatat$

1 3 2 a| aacatat$

2 0 1 acaaacatat$

3 4 3 a| acatat$

4 6 1 c| atat$

5 3 5 T ais 0-[0..10]
6 1 0 a| caaacatat$

7 5 2 a| catat$ [1-[0.5] [2-[6.7]] [1-8.9]]
8 7 0 a| tat$

9 9 1 al| t$

10 10 0 t|$ |2-[0.41]| |3-[2..3]| |2-[4.45]|

Fig. 2. The enhanced suffix array of the strifig- acaaacarar and its Icp-interval tree.

1 This definition has to be extended to the cages 0 orip = 0, but throughout the paper we do not explicitly
state boundary cases like these.
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As an example, consider the table on the left side of Fi§0.2%5] is a 1-interval because
Icptab[0] = 0 < 1, Icptab[5 + 1] = 0 < 1, Icptab[k] > 1 for all k¥ with 1 < k < 5, and
Icptab[2] = 1. Furthermore, 10..5] is thea-interval and¢Indices(0, 5) = {2, 4}. We shall
see later that Icp-intervals correspond to internal nodes of the suffix tree.

3.3. Anew algorithmfor finding supermaximal repeats

Definition 3.2. An ¢-interval[i.. j] is called docal maximumin the Icp-table ificptab[k] =
¢foralli +1<k<j.

For instance, in the Icp-table of Fig. 2, the local maxima are the inteffalq, [2..3],
[4..5],[6..7], and[8..9].

Lemma 3.3. A string w is a supermaximal repeat if and only if thereisan £-interval [i..j]
such that

e [i..j]isalocal maximumin the Icp-tableand [i..j] isthe w-interval,
o the charactersbwttab[i], bwttab[i + 1], ..., bwttab[j] are pairwise distinct.

Proof. (If) Sincew is a common prefix of the suffixeBufanyi], - - - » Ssuftab[j] aNdi < j, itis
certainly arepeat. The charactéfsuftab[i]+¢], S[suftab[i +1]+¢], ..., S[suftab[ j]+¢]
are pairwise distinct becau$e.j] is a local maximum in the Icp-table. By the second
condition, the charactetsvttab[i ], bwttab[i 4+ 1], ..., bwttab[ j] are also pairwise distinct.
It follows thatw is a maximal repeat and that there is no repeat Which containsw. In
other wordsw is a supermaximal repeat.

(Only if) Let w be a supermaximal repeat of length| = ¢. Furthermore, suppose
that suftab[i], suftab[i + 1], ..., suftab[j], 0 <i < j < n, are the consecutive entries in
suftab such thatw is a common prefix 08suttan(i], Ssuttabli+1], - - - » Ssuftab[j] DUL Neither of
Ssuftabli—1) NOT Of Ssuttanj+1). Becausew is supermaximal, the characteSgsuftabli] +
2], S[suftabli + 1] + ¢], ..., S[suftab[j] + ¢] are pairwise distinct. Hencleptab[k] = ¢
for all k with i + 1 < k < j. Furthermore|cptab[i] < £ andlcptab[j + 1] < £ hold be-
cause otherwise would also be a prefix 0Bsuftabii—1] OF Ssuttabj+11- All in all, [i..j]
is a local maximum of the arralgptab and[i..;j] is the w-interval. Finally, the charac-
tersbwttab[i], bwttab[i + 1], ..., bwttab[j] are pairwise distinct becauseis supermaxi-
mal. O

The preceding lemma does not only imply that the number of supermaximal repeats
is smaller tham, but it also suggests a simple linear time algorithm to compute all su-
permaximal repeats of a stringy Find all local maxima in the Icp-table &f. For every
local maximum(i..j] check whethebwttab[i], bwttab[i + 1], ..., bwttab[j] are pairwise
distinct characters. If so, report the striifpuftab[i]..suftab[i] + Icptab[i] — 1] as super-
maximal repeat. The reader is invited to compare our simple algorithm with the suffix-tree
based algorithm of [15, p. 146].
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3.4. Computation of maximal unique matches

Next, we tackle a problem that has its origin in genome comparisons. Nowadays, the
DNA sequences of entire genomes are being determined at a rapid rate. For example,
the genomes of several strains of the bact&ria@oli and S. aureus have already been
completely sequenced. When the genomic DNA sequences of closely related organisms
become available, one of the first questions researchers ask is how the genomes align. This
alignment may help, for example, in understanding why a strain of a bacterium is patho-
genic or resistant to antibiotics while another is not. The softwareNdiimer [8] has
been developed to efficiently align two sufficiently similar genomic DNA sequences. In the
first phase of its underlying algorithm, a maximal unique makbi1) decomposition of
two genomess; and S, is computed. Using the suffix tree 6f#S>, MUMs can be com-
puted in Qn) time and space, where= |S1#S»2| and # is a symbol neither occurring in
S1 nor in S2. However, the space consumption of the suffix tree has been identified to be
a major problem when comparing large genomes; see [8]. We will solve this problem by
using the suffix array enhanced with the Icp-table.

Definition 3.4. Given two sequence$ andS2, aMUM is a sequence that occurs exactly
once inS1 and once inSz, and is not contained in any longer such sequence.

Lemma 3.5. Let # be a unique separator symbol not occurring in S1 and S and let § =
S1#S5. The string u isa MUM of S1 and S» if and only if u is a supermaximal repeat in S
such that

(1) thereisonly one maximal repeated pair ((i1, j1), (i2, j2)) with

u = S[i1..j1] = S[i2..j2],

(2) j1 < p <i2, where p =|S1| isthe position of #in S.

Proof. (If) It is a consequence of conditions (1) and (2) thaiccurs exactly once i1
and once inS,. Because the repeated péif1, j1), (i2, j2)) is maximalu is aMUM.

(Only if) If u is aMUM of the sequence$; and Sz, then it occurs exactly once iy
(say,u = S1[i1..j1]) and once irSz (say,u = Sz[iz..j2]), and is not contained in any longer
such sequence. Clearlyj1, j1), (p +1+i2, p+ 1+ j2)) is a repeated pair il = $13$5>,
wherep = |S1|. Because: occurs exactly once iff; and once inS,, and is not contained
in any longer such sequence, it follows thats a supermaximal repeat i$i satisfying
conditions (1) and (2). O

The first version oMUMmer [8] computedMUMs in O(]S]) time and space with the
help of the suffix tree ofS = S1#S2. Using an enhanced suffix array, this task can be
done more time and space economically as follows: Find all local maxima in the Icp-
table of S = S1#S>. For every local maximurfy.. j] check whethef + 1 = j, bwttab[i] #
bwttab[ j], andsuftab[i] < p < suftab[j]. If so, reportS[suftab[i]..suftab[i]+Icptab[i] — 1]
asMUM. This simple algorithm was found independently by Hon and Sadakane [18] and
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the authors of this article [1]. In Section 9, we compare the performand&dimer with
the implementation of the preceding algorithm.

Recently, Delcher et al. [9] presented a new versioMoMmer, calledMUMmer 2. It
constructs the suffix tree &f and computes matches by streamigagainst it. A sim-
ilar, but more space efficient algorithm can be implemented based on the enhanced suffix
array ofS1. See [26] for details of this algorithm and for an experimental comparison with
MUMmer 2.

The algorithms to compute supermaximal repeats MttMs require tablesuftab,
Icptab, andbwttab, but do not access the input sequence. More precisely, instead of the
input string, we use tablewttab without increasing the total space requirement. This is
because the tablasftab, Icptab, andowttab can be accessed in sequential order, thus lead-
ing to an improved cache coherence and in turn considerably reduced running time; see
Section 9. The same technique is applied in the computation of maximal repeated pairs in
Section 5.1.

4. Thelcp-interval tree of a suffix array

Kasai et al. [20] presented a linear time algorithm to simulate the bottom-up traversal of
a suffix tree with a suffix array and its Icp-information. The following algorithm is a slight
modification of their algorithm TraverseWithArray. It computes all Icp-intervals of the Icp-
table with the help of a stack. The elements on the stack are Icp-intervals represented by
tuples(lcp, Ib, rb), wherelcp is the Icp-value of the intervalb is its left boundary, andb
is its right boundary. In Algorithm 4.Jpush (pushes an element onto the stack) aod
(pops an element from the stack and returns that element) are the usual stack operations,
while top provides a pointer to the topmost element of the stack. Furthermoséands
for an undefined value.

Algorithm 4.1 (Computation of Icp-intervals (adapted from Kasai et al. [20])).

push({0, 0, L))
fori:=1ton do
lb:=i—-1
while Icptab[i] < top.Icp
top.rb:=i—1
interval := pop
report(interval)
Ib:=interval.lb
if Icptab[i] > top.Icp then
push((Icptabli], Ib, L))

Here, we will take the approach of Kasai et al. [20] one step further and introduce the
second essential concept of this article—the Icp-interval tree.
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Definition 4.2. An m-interval[/..r] is said to beembedded in an ¢-interval[i..j] if it is a
subinterval ofii..j] (i.e.,i <I <r < j)andm > £.2 The(-interval[i.. j] is then called the
intervalenclosing [/..r]. If [i..j] encloseg!..r] and there is no interval embeddedin ;]
that also enclosds..r], then[/..r] is called achild interval of [i../].

This parent-child relationship constitutes a conceptual (or virtual) tree which we call
the Icp-interval tree of the suffix array. The root of this tree is the O-interf@l.n]; see
Fig. 2. The Icp-interval tree is basically the suffix tree without leaves (more precisely, there
is a one-to-one correspondence between the nodes of the Icp-interval tree and the internal
nodes of the suffix tree). These leaves are left implicit in our framework, but every leaf in
the suffix tree, which corresponds to the suisap, can be represented bysangleton
interval [1..I]. The parent interval of such a singleton interval is the smallest Icp-interval
[i..j]with [ € [i..j]. For instance, continuing the example of Fig. 2, the child intervals of
[0..5] are[0..1], [2..3], and[4..5]. The next theorem shows how the parent-child relation-
ship of the Icp-intervals can be determined from the stack operations in Algorithm 4.1.

Theorem 4.3. Consider the for-loop of Algorithm 4.1 for some index i. Let top be the
topmost interval on the stack and top_, be the interval next to it (note that top_,.lcp <
top.lcp). If Icptab[i] < top.lcp, then before top will be popped from the stack in the while-
loop, the following holds:

(1) If Icptab[i] < top_4.lcp, then top is the child interval of top_;.
(2) Iftop_;.lcp < Icptabli] < top.Icp, then top isthe child interval of the Icptabli]-interval
that contains:.

Proof. We will show (1). The other case follows similarly. First, we show tiogatis em-
bedded intop_;. The following invariant is maintained in the for-loop of Algorithm 4.1:
if (€1,1b1,rb1),..., (€, lbg,rbg) are the intervals on the stack, wheéop = (¢, lbg, rby)
thenlb; <Ib; and¢; < ¢; forall 1<i < j < k. Furthermore, becausé;, Ib;, rb;) will
be popped from the stack befoté;, Ib;, rb;), it follows thatrb; < rb;. Thus, the;-
interval[lb;..rb;]is embedded in thg -interval[lb;..rb;]. In particulartop is embedded in
top_;.

If top was not the child interval otop_4, then there would be an Icp-interval
(Icp’, I, rb’) such thatop is embedded idlcp’, Ib', rb’) and(lcp’, I, rb’) is embedded in
top_4. This, however, can only happen(itcp’, Ib', rb') is an interval on the stack that is
abovetop_;. This contradiction proves the claimmo

An important consequence of Theorem 4.3 is the correctness of Algorithm 4.4. There,
the Icp-interval tree is traversed in a bottom-up fashion by a linear scan of the Icp-
table, while storing needed information on a stack. We stress that the Icp-interval tree is
not really build: whenever aié-interval is processed by the generic functimocess,
only its child intervals have to be known. These are determined solely from the Icp-

2 Note that we cannot have both=/ andr = j becausen > ¢.
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information, i.e., there are no explicit parent-child pointers in our framework. In con-
trast to Algorithm 4.1, Algorithm 4.4 computes all Icp-intervals of the Icp-talith

the child information. Here, the elements on the stack are Icp-intervals represented by
quadrupleglcp, Ib, rb, childList), wherelcp is the Icp-value of the intervalp is its left
boundaryrb is its right boundary, anghildList is a list of its child intervals. Further-
more,add([c1, ..., ck], ¢) appends the elementto the list[cy,..., cx] and returns the
result.

Algorithm 4.4 (Traverse and process the Icp-interval tree).

lastinterval .= L
push({0, 0, L, [1))
fori:=1ton do
lb:=i—-1
while Icptab[i] < top.Icp
top.rb:=i -1
lastInterval := pop
process(lastinterval)
Ib:=lastinterval.lb
if Icptab[i] < top.Icp then
top.childList := add(top.childList, lastinterval)
lastinterval .= L
if Icptab[i] > top.lcp then
if lastinterval # L then
push({Icptab[i], Ib, L, [lastinterval]))
lastinterval .= L
else push((lcptab[i], Ib, L, [ 1))

In Section 5, we will show how to solve several problems merely by specifying the
functionprocess called in line 8 of Algorithm 4.4.

5. Bottom-up traversals

In this section, we show how to efficiently solve all problems with enhanced suffix
arrays that are usually solved by a bottom-up traversal of the suffix tree. As examples, we
show how to compute all maximal repeated pairs and the Ziv—Lempel decomposition of a
string.

5.1. An efficient implementation of an optimal algorithm for finding maximal repeated
pairs

The computation of maximal repeated pairs plays an important role in the analysis of
a genome. The algorithm of Gusfield [15, p. 147] computes maximal repeated pairs of a
sequence of lengthn in O(| X |n + z) time, wherez is the number of maximal repeated
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pairs. This running time is optimal. To the best of our knowledge, Gusfield’s algorithm
was first implemented in thREPuter-program [27], based on space efficient suffix trees
described in [25]. The software to®EPuter uses maximal repeated pairs as seeds for
finding degenerate (or approximate) repeats. In this section, we show how to implement
Gusfield’s algorithm using enhanced suffix arrays. This considerably reduces the space re-
quirements, thus removing a bottle neck in the algorithm. As a consequence, much larger
genomes can be searched for repetitive elements. As in the algorithms in Section 3.3, the
implementation requires tablasftab, Icptab, andbwttab, but does not access the input
sequence. The accesses to the three tables are in sequential order, thus leading to an im-
proved cache coherence and in turn to a considerably reduced running time; this is verified
in Section 9.

We begin by introducing some notation: Létstand for the undefined character. We
assume that it is different from all characters3h Let [i..j] be an{-interval andu =
S[suftab[i]..suftab[i] 4+ ¢ — 1]. Define; ;) to be the set of positiong such that: is a
prefixofS,,i.e., R;. jj = {suftab[r] | i <r < j}. We divideF;. ;) into disjoint and possibly
empty sets according to the characters to the left of each position: Far any U {1}
define

Pii.j1a) = {

The algorithm computes position sets in a bottom-up strategy. In terms of an Icp-interval
tree, this means that the Icp-interyal j] is processed only after all child intervals[ef. j]
have been processed.

Supposdi..j] is a singleton interval, i.ei,= j. Let p = suftab[i]. Then®; ;; = {p}
and

{010€Py..j1) ifa=_1,
{plpehi.p=>0, andS[p —1]=a} otherwise

_[{p} fp>0andS[p—1=aorp=0anda =1,

Ri.jp(@) = { Mp otﬁerwise g g

Now suppose that< j. Foreachlu € X U {1}, ;. ;)(a) is computed step by step while
processing the child intervals ¢f..j]. These are processed from left to right. Suppose
that they are numbered, and that we have already procegsseitt intervals offi..j]. By
Pfi'.j](a) we denote the subset 8f;._;;(a) obtained after processing th¢h child interval
of [i..j]. Let[i’..j’] be the(q + 1)th child interval offi.. j]. Due to the bottom-up strategy,
[i"..j'] has been processed and hence the position73gts,(b) are available for any
be X U{Ll}.

The interval[i’..j’] is processed in the following way: First, maximal repeated pairs are
output by combining the position s‘é’ﬁ_'j](a), a € ¥ U{L}, with position sets%;_;1(b),
be X U{L}. Inparticular,((p, p+£¢—1),(p', p' + £ —1)), p < p/, are output for all
pE P[qi_'j](a) andp’ € By jn(b),a,be X U{L}anda #b.

It is clear thatu occurs at positiorp andp’. Hence((p, p + ¢ —1), (p’, p' + £ — 1))
is a repeated pair. By construction, only those positiprasd p’ are combined for which
the characters immediately to the left, i.e., at positiprs1 andp’ — 1 (if they exist), are
different. This guarantees left-maximality of the output repeated pairs.

The position set@’ﬁv_j](a) were inherited from child intervals ¢f.. j] that are different
from [i’..j']. Hence the characters immediately to the right:adt positionsp + ¢ and
p’ +£ (if they exist) are different. As a consequence, the output repeated pairs are maximal.
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Once the maximal repeated pairs for the current child intgitaj’] have been output,
the unionpgfjl](e) = 7’5..;](6) U Bi..jn(e) is computed for alk € ¥ U {L}. That is, the
position sets are inherited frofit.. ;'] to [i..j].

In Algorithm 4.4, if the functiorprocess is applied to an Icp-interval, then all its child
intervals are available. Hence the maximal repeated pair algorithm can be implemented by
a bottom-up traversal of the Icp-interval tree. To this end, the fungifopess in Algo-
rithm 4.4 outputs maximal repeated pairs and further maintains position sets on the stack
(which are added as a fifth component to the quadruples). The bottom-up traversal requires
O(n) time.

There are two operations performed when processing an Icp-inféryal Output of
maximal repeated pairs by combining position sets and union of position sets. Each com-
bination of position sets means to compute their Cartesian product. This delivers a list of
position pairs, i.e., maximal repeated pairs. Each repeated pair is computed in constanttime
from the position lists. Altogether, the combinations can be computedantine, where
z is the number of repeats. The union operation for the position sets can be implemented
in constant time, if we use linked lists. For each Icp-interval, we hay&'() union opera-
tions. Since @) Icp-intervals have to be processed, the union and add operations require
O(] ¥ |n) time. Altogether, the algorithm runs in((X|n + z) time.

Next, we analyze the space consumption of the algorithm. A positiofsef(a) is
the union of position sets of the child intervals[af j]. If the child intervals ofi..j] have
been processed, the corresponding position sets are obsolete. Hence it is not required to
copy position sets. Moreover, we only have to store the position sets for those Icp-intervals
which are on the stack used for the bottom-up traversal of the Icp-interval tree. So it is
natural to store references to the position sets on the stack together with other information
about the Icp-interval. Thus the space required for the position sets is determined by the
maximal size of the stack. Since this i$, the space requirementig|&|»). In practice,
however, the stack size is much smaller. Altogether the algorithm is optimal, since its space
and time requirement s linear in the size of the input plus the output.

5.2. Computing the Ziv—Lempel decomposition

As a second application of the bottom-up traversal of the Icp-interval tree, we will very
briefly describe how to compute the Ziv—Lempel decomposition [33,34] of a string. The
Ziv—Lempel decomposition plays an important role in data compression, and recently it
was used in linear time algorithms for the detection of all tandem repeats of a string [16,
24].

For each position of S, let/; denote the length of the longest prefix$jt..n] that also
occurs as a substring Sfstarting at some position< i. Lets; denote the starting position
of the leftmost occurrence of this substringsinif /; > 0, ands; = 0, otherwise; see Fig. 3.

The Ziv—Lempel decomposition of is the list of indicesiy, io, ..., i, defined in-
ductively byi1 =0 andigi1 = ip + max{1,1/;,} for B > 1 andig < n. The substring
Slip..ip+1— 1], 1< B < k, obtained in this way is called theth block of the Ziv—Lempel
decomposition of.

The Ziv—Lempel decomposition of a strisgcan also be computedf-linein linear time
by a bottom-up traversal of the Icp-interval tree; see Algorithm 4.4. To this end, we add



66 M.1. Abouelhoda et al. / Journal of Discrete Algorithms 2 (2004) 53-86

Sli] [alclalala]clalt][a]t]$§ ] B 112|134 |51]6|7]|8
i [[o]1]2]3[4|5]6][7]8][9]10 iB 0]1)2]3 |5 8 110
si 1ololol2[ofl1]ofol6]7]0 B-thblock |a |c|a|aa|ca|t|at| $
i |10]0]112(3[2(1]0|2|1]0

Fig. 3. The values aof; andl; (left) and the Ziv—Lempel decomposition (right).

another valuemin of type integer to the quadruples stored on the stack. This value is ini-
tially set to_L and will be updated by thgrocess function. At any stage, when the function
processis applied to art-intervall[i..j], all its child intervals are known and have already
been processed (note tHat j] # [0..n] must hold). Let[/1..r1], [l2..r2], ..., [lk..rx] be
thek child intervals offi..j], stored in itschildList. Let ming, ..., min; be the respective
min-values of the child intervals. Let

M = {miny, ..., ming} U {suftablq] | g € [i..j]andg ¢ [I,..r,] forall 1< p <k}.

Computemin := minM and assign for aly € M with g # min: s, := min and/, := ¢.
Finally, for the root[0..n] of the Icp-interval tree, we assign for ajl € M: s, := 0 and
ly:=0.

6. Top-down traversals

Based on the analogy between the Icp-interval tree and the suffix tree, it is desirable to
enhance the suffix array with additional information to determine, fortaimgerval(i.. j1,
all its child intervals in constant time. We achieve this goal by enhancing the suffix array
with the Icp-table and an additional table: the child-tadilédtab; see Fig. 4. The child-
table is a table of size + 1 indexed from 0 t&: and each entry contains three valugs:
down, andnextZIndex. Each of these three values requires 4 bytes in the worst case. We

childtab

i | suftab | Icptab | 1. [ 2. [ 3. | Sqpab)

0 2 0 )| 6| aaacatat$
1 3 2 |~ | aacatat$

2 0 1] 1T®)| 4] acaaacatat$
3 4 3 L~ | acatat$

4 6 1] 3T 54+—| atat$

5 8 2 L~ | at$

6 1 0| 27(@)| 8| caaacatat$
7 5 2 L | catat$

8 7 0| 77O 10 | tat$

9 9 1 L~ | t$
10 10 0] 91 $

Fig. 4. Suffix array of the string = acaaacatar enhanced with thé&ptab andchildtab. The fields 1, 2, and 3
of the childtab denote theup, down, andnext¢Index field. The encircled entries are redundant because they also
occur in theup field. The arcs point to the field where thp-value is stored.
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shall see later thatit is possible to store the same information in only one field. Formally, the
values of eaclshildtab-entry are defined as follows (we assume thatninmaxy = 1):

childtab[i].up= min{q € [0..i — 1] | Icptab[g] > Icptab[i] and
Vk € [q + 1..i — 1] : Icptab[k] > Icptab[q]},
childtab[i].down = max{q € [i 4+ 1..n] | Icptab[q] > Icptab[i] and
Vk €[i 4+ 1..g — 1] : Icptab[k] > Icptab[q]},
childtab[i].next¢Index
=min{q € [i + 1..n] | Icptab[¢] = Icptab[i] and
Vk € [i 4+ 1..g — 1] : Icptab[] > Icptabli]}.

In essence, the child-table stores the parent-child relationship of Icp-intervals. Roughly
speaking, for ai-interval[i.. j] whosef-indices aré; < i> < - - - < iy, thechildtab[i].down

or childtab[j + 1].up value is used to determine the fitsindexi;. The other¢-indices
io,...,Ir can be obtained fromhildtab[i1].next¢Index, . . ., childtab[i;_1].next¢Index, re-
spectively. Once thesé-indices are known, one can determine all the child intervals of
[i..j] according to the following lemma.

Lemma6.1. Let [i..j] bean ¢-interval. If i1 < iz < --- < iy arethe £-indicesin ascending
order, thenthechildintervalsof [i..j] are[i..iy — 1], [i1..i2— 1], ..., [ix..j] (notethat some
of them may be singleton intervals).

Proof. Let [/..r] be one of the intervalg..i1 — 1], [i1..i2 — 1], ..., [ix..j]. If [l..r] is @
singleton interval, then it is a child interval @f.j]. Suppose thdt..r] is anm-interval.
Since[l..r] does not contain atrindex, it follows thafi..r] is embedded ifi.. j]. Because

Icptabli1] = Icptabliz] = - - - = Icptab[ix] = ¢,

there is no interval embedded|in. j] that enclose§..r]. Thatis,[l..r] is a child interval
of [i..j]. Finally, it is not difficult to see thafti..iy — 1], [i1..i2 — 1], ..., [ix..j] are all the
child intervals offi..j], i.e., there cannot be any other child intervat

As an example, consider the enhanced suffix array in Fig. 4. Tite.3}-interval has
the 1-indices 2 and 4. The first 1-index 2 is storedtiidtab[0].down andchildtab[6].up.
The second 1-index is stored ¢hildtab[2].next¢Index. Thus, the child intervals di..5]
are[0..1], [2..3], and[4..5]. In Section 6.2, it will be shown in detail how the child-table
can be used to determine the child intervals of an Icp-interval in constant time.

6.1. Construction of the child-table

The child-table can be computed in linear time by a bottom-up traversal of the Icp-
interval tree as in Algorithm 4.4. For clarity of presentation, however, we introtiuze
algorithms to separately construct thp/down values and theext¢Index value of the
child-table. Similar to Algorithm 4.4, Algorithm 6.2 scans the Icp-table in linear order and
pushes the currentindex on the stack if its Icp-value is greater than or equal to the Icp-value
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of top. Otherwise, elements of the stack are popped as long as their Icp-value is greater than
that of the current index. Based on a comparison of the Icp-valuepa@nd the current
index, theup anddown fields of the child-table are filled with elements that are popped
from the stack during the scan.

Algorithm 6.2 (Construction of theip anddown values).

lastindex:= —1
push(0)
fori:=1ton do
while Icptab[i] < Icptab[top]
lastindex := pop
if (Icptab[i] < Icptab[top]) and (Icptab[top] # Icptab[lastindex]) then
childtab[top].down := lastindex
/* now Icptab[i] > Icptab[top] holds*/
if lastindex # —1 then
childtab[i].up := lastIndex
lastindex:= —1
push(i)

For a correctness proof, we need the following lemma.

Lemma 6.3. The following invariants are maintained in the for-loop of Algorithm 6.2 If
i1,...,ip aretheindices on the stack (where i), isthe topmost element), theni; <--- <,
and Icptab[i1] < - - - < leptab[i,]. Furthermore, if Icptab[i;] < Icptab[i; 1], then for all &
withi; <k <i;y1 wehavelcptab[k] > Icptab[i; 1].

Proof. The lemma holds before the for-loop is executed for the first time. By induction, we
assume that the lemma holds after the for-loop was exeeutétes, wheren < n. Con-
sider the(m + 1)th execution of the for-loop. Suppose there is an ingleyith 1< ¢ < p
such thatcptab[i1] < --- < lcptab[i,] < lcptab[m + 1] < Icptab[ig41] < - - - < Ieptab[i,].
(The cases, wheteptab[m + 1] < Icptab[i1] or Icptab[i,] < Icptab[m 4 1] are proven sim-
ilarly.) In the while-loop,is41,...,i, are popped from the stack and in the if-statement
immediately after the while-loopnz 4+ 1 is pushed onto the stack. That is, after the
(m + Dth execution of the for-loopj, ..., i;,m + 1 are on the stack wit + 1 being

the topmost element. Clearlij, < --- < i; <m + 1 andlcptab[iz] < --- < leptab[iy] <
Icptab[m 4+ 1]. Suppose thatptab[i,] < Icptab[m + 1]. By the inductive hypothesis, for
everyj e {1,..., p} with Icptab[i;] < Icptab[i; 1], we havelcptab[k] > Icptabl[i ;1] for

all k with i; < k < i;41. Itis not difficult to see thalcptab[k] > Icptab[m + 1] for all &
with i, <k <m + 1is a consequence, and hence the lemma follows.

Theorem 6.4. Algorithm 6.2 correctly fills the up and down fields of the child-table.

Proof. If the childtab[top].down := lastindex statement is executed, then we hayeab[i ]
< Icptab[top] < Icptab[lastindex] andtop < lastindex < i. Recall thatchildtab[top].down
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is the maximum of the se = {¢g € [top+ 1..n] | Icptab[q] > Icptab[top] andVk < [top +
1..g — 1] : Icptab[k] > Icptab[g]}. Clearly,lastindex € [top + 1..n] andicptab[lastindex] >
Icptab[top]. Furthermore, according to Lemma 6.3, for lalvith top < k < lastindex we
havelcptab[k] > Icptab[lastindex]. In other words|astindex is an element oM. Suppose
thatlastIndex is not the maximum oM. Then there is an elemedtin M with lastindex <

q' < i. According to the definition ofM, it follows that Icptab[lastindex] > Icptab[g’].
This, however, implies thaastlndex must have been popped from the stack when index
was considered. This contradiction shows flaati ndex is the maximum of\/.

If the childtab[i].up := lastindex statement is executed, th&ptab[top] < Icptab[i] <
Icptab[lastindex] andtop < lastindex < i. Recall thatchildtab[i].up is the minimum of
the setM’ = {q € [0..i — 1] | lcptab[g] > Icptab[i] andVk € [¢g + 1..i — 1] : Icptab[k] >
Icptab[g]}. Clearly, we havéastindex € [0..i — 1] andicptab[lastindex] > Icptab[i]. More-
over, for all k with lastindex < k < i we havelcptab[k] > Icptab[lastindex] because
otherwiselastindex would have been popped earlier from the stack. In other words,
lastindex € M’. Suppose thatastindex is not the minimum ofM’. Then there is a
q' € M’ with top < g’ < lastindex. According to the definition of\/’, it follows that
Icptab[lastindex] > Icptab[q’] > Icptab[i] > Icptab[top]. Hence, index;’ must be an ele-
ment betweetop andlastindex on the stack. This contradiction shows thestindex is the
minimum ofM’. O

The construction of thaextZIndex field is easier. One merely has to check whether
Icptab[i] = Icptab[top] holds true. If so, then is assigned to the fielchildtab[top].next¢
Index. Itis not difficult to see that Algorithms 6.2 and 6.5 construct the child-table in linear
time and space.

Algorithm 6.5 (Construction of theext¢Index value).
push(0)

fori:=1ton do
while Icptab[i] < Icptab[top]

pop
if Icptab[i] = Icptab[top] then
lastindex := pop
childtab[lastlndex].next¢Index := i
push(i)

To reduce the space requirement of the child-table, only one field is used in prac-
tice. Thedown field is needed only if it does not contain the same information as
the up field. Fortunately, for ar-interval, only onedown field is required because an
¢-interval [i..j] with k ¢-indices has at most + 1 child intervals. Suppos€i..r1],
[l2..r2], ..., Uk..vi], [lkg1..rk41] are thek 4 1 child intervals offi..j1, wheref[l,..r,] is
an £ -interval andi, denotes its first,-index for any 1< g < k + 1. In theup field of
childtab[r1 + 1], childtab[r2 + 1], ..., childtab[r; + 1] we store the indicesg, io, ..., i,
respectively. Thus, only the remaining indgx.1 must be stored in thelown field of
childtab[r; + 1]. This value can be stored amildtab[r; + 1].next¢Index because; + 1 is
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the last¢-index and hencehildtab[r; + 1].next¢Index is empty; see Fig. 4. However, if we
do this, then for a given indexwe must be able to decide whethubildtab[i ].nexténdex
contains the next-index or thechildtab[i].down value. This can be accomplished as fol-
lows. childtab[i].next¢Index contains the nexé-index if Icptab[childtab[i].next¢Index] =
Icptab[i], whereas it stores thehildtab[;].down value if Icptab[childtab[i].nextIndex] >
Icptab[i]. This follows directly from the definition of th@ext¢Index and down field,
respectively. Moreover, the memory cells dfildtab[i].next¢Index, which are still un-
used, can store the values of the field. To see this, note thahildtab[i + 1].up # L

if and only if Icptab[i] > Icptab[i + 1]. In this case, we havehildtab[i].next¢Index = L
andchildtab[i].down = L. In other wordschildtab[i].next¢Index is empty and can store
the valuechildtab[i + 1].up; see Fig. 4. Finally, for a given indek one can decide
whetherchildtab[i].next¢Index contains the valuehildtab[i 4+ 1].up by testing whether
Icptab[i] > Icptab[i + 1]. To sum up, although the child-table theoretically uses three fields,
only space for one field is actually required.

6.2. Determining child intervalsin constant time

Given the child-table, the first step to locate the child intervals of-arterval[i..j] in
constant time is to find the firgtindex in[i..j], i.e., the minimum of the sei ndices(i, j).
This is possible with the help of thep anddown fields of the child-table:

Lemma 6.6. For every ¢-interval [i..j] the following statements hold:

(1) i < childtab[j + 1].up< j or i < childtab[i].down < ;.
(2) childtab[j + 1].up stores thefirst £-indexin [i..j]if i < childtab[j + 1].up< ;.
(3) childtab[i].down stores thefirst £-indexin [i..j] if i < childtab[i].down< ;.

Proof. (1) First, consider indeX + 1. Supposécptab[j + 1] = ¢ and let!’ be the cor-
responding?’-interval. If [i..j] is a child interval ofl’, thenlcptab[i] = ¢’ and there is
no ¢-index in[i + 1..j]. Thereforechildtab[j + 1].up = min£Indices(i, j), and conse-
quentlyi < childtab[j + 1].up < j. If [i..j] is not a child interval off’, then we consider
index i. Supposecptabli] = ¢” and letI” be the corresponding’-interval. Because
Icptab[j + 1] = ¢/ < £” < £, it follows that[i..j] is a child interval of/”. We conclude
thatchildtab[i].down = min£Indices(i, j). Hence; < childtab[i].down < j.
(2) If i < childtab[j + 1].up < j, then the claim follows from

childtab[j 4+ 1].up=min{q € [i + 1..j] | Icptab[¢] > Icptab[j + 11,
lcptablk] > lcptablq] V& € [ + 1..j1}
=min{q € [i +1..j]| Icptab[k] > Icptab[¢] Vk € [¢ + 1../1}
= minZ£indices(i, j).
(3) Let iy be the firsté-index of [i..j]. Thenlcptab[i1] = ¢ > Icptab[i] and for allk

[i +1..i1— 1] the inequalityicptab[k] > ¢ = Icptab[i1] holds. Moreover, for any other index
g €[i +1..j], we havdcptab[q] > £ > Icptab[i] butnot Icptab[i1] > Icptablg]. O
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Once the firsté-index iy of an ¢-interval [i..j] is found, the remaining-indices
ip <iz<--- < i in [i..j], where 1< k < |¥|, are obtained successively from the
next?Index field of childtab[i1], childtab[i2], ..., childtab[i;_1]. It follows that the child
intervals offi..j] are the interval§i..i; — 1], [i1..i2 — 1], ..., [ik..j]; See Lemma 6.1. The
pseudo-code implementation of the following functgatChildintervalstakes a paifi, j)
representing ai-interval[i..j] as input and returns a list containing the pdits; — 1),
(i1,i2—1), ..., (ik, j)-

Algorithm 6.7 (getChildintervals, applied to an Icp-intervdk.. j] # [0..n]).

intervalList =[ |

if i < childtab[j + 1].up < j then
i1 := childtab[ j + 1].up

else i1 := childtab[i].down

add(intervallList, (i, i1 — 1))

while childtab[i;].next¢Index # L do
io := childtab[i1].next¢Index
add(intervalList, (i1, i2 — 1))
i1:=1i2

add(intervalList, (i1, j))

The functiongetChildintervals runs in time Q|X|). Since we assume thak| is a
constantgetChildintervalsruns in constant time. UsirgetChildintervalsone can simulate
every top-down traversal of a suffix tree on an enhanced suffix array. To this end, one can
easily modify the functiorgetChildintervals to a functiongetinterval which takes art-
interval[i..j] and a character € X as input and returns the child interval.r] of [i..j]
(which may be a singleton interval) whose suffixes have the charaetgvosition?. Note
that all the suffixes iffl..r] share the sam&character prefix becaugke.r] is a subinterval
of [i..j]. If such an intervall..r] does not existgetinterval returnsL. Clearly,getlnterval
has the same time complexity gatChildintervals.

With the help of Lemma 6.6, it is also easy to implement a functeticp(i, j)
that determines the Icp-value of an Icp-interyalj] in constant time as follows: If
i < childtab[j + 1].up < J, thengetlcp(i, j) returns the valuéeptab[childtab[j + 1].up],
otherwise it returngptab[childtab[;].down].

6.3. Answering queriesin optimal time

As already mentioned in the introduction, given the basic suffix array, it takeddagn)
time in the worst case to answer decision queries of lemgtBy using an additional table
(similar to the Icp-table), this time complexity can be improved te:Q- logn); see [29].
The logarithmic terms are due to binary searches, which Ia@dtethe suffix array ofs.
In this section, we show how enhanced suffix arrays allow us to answer decision queries of
the type “IsP a substring of§?” in optimal Q(m) time. Moreover, enumeration queries of
the type “Where are alf occurrences oP in §?” can be answered in optimal(@ + z)
time, totally independent of the size 8f
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Algorithm 6.8 (Answering decision queries).

c:=0
queryFound := True
(i, j) := getinterval (0, n, P[c])
while (i, j) # L and ¢ < m and queryFound = True
if i £ j then
¢ :=getlep(, j)
min := min{¢, m}
gueryFound := S[suftab[i] + c..suftab[i] + min — 1] = P[c..min — 1]
c:=min
(i, j) := getinterval (i, j, P[c])
else queryFound := S[suftab[i] + c..suftab[i] +m — 1] = P[c..m — 1]
if queryFound then
Report(i, j) /* the P-interval */
else print “ pattern P not found”

The algorithm starts by determining witfetinterval (0, n, P[0]) the Icp or singleton
interval[i..j] whose suffixes start with the charac#®jO]. If [i..j] is a singleton interval,
then patternP occurs inS if and only if S[suftab[i]..suftab[i] + m — 1] = P. Otherwise,
if [i..j] is an Icp-interval, then we determine its Icp-valdy the functiongetlcp; see
end of Section 6.2. Leb = S[suftab[i]..suftab[i] + ¢ — 1] be the longest common prefix
of the suffixesSsuftan(i], Ssuftabi+1]; - - - » Ssuftab[ j1- If £ = m, then patternP occurs inS if
and only ifw[0..m — 1] = P. Otherwise, if¢ < m, then we test whethes = P[0..£ — 1].

If not, then P does not occur irs. If so, we search withgetinterval(i, j, P[¢]) for the
¢'- or singleton intervali’..j'] whose suffixes start with the prefik[0..£] (note that the
suffixes of[i’..j'] have P[0..£ — 1] as a common prefix becaugg..’] is a subinter-
val of [i..j]). If [i’..j'] is a singleton interval, then pattefh occurs inS if and only if
S[suftab[i'] + £..suftab[i’] + m — 1] = P[£..m — 1]. Otherwise, if(i’..j'] is an¢’-interval,

let ' = S[suftab[i]..suftab[i"] + ¢’ — 1] be the longest common prefix of the suffixes
Ssuftabli’]» Ssuftabli’+1]» « - - » Ssuftab[j'] - If ¢ > m, then patternP occurs inS if and only if
@'[€..m — 1] = P[£..m — 1] (or equivalentlyw[0..m — 1] = P). Otherwise, if¢’ < m, then
we test whethew[¢..¢/ — 1] = P[¢..¢' — 1]. If not, then P does not occur ir§. If so, we
search withgetinterval(i’, j/, P[¢']) for the next interval, and so on.

Enumerative queries can be answered in optimagt @ z) time as follows. Given a
patternP of lengthm, we search for the®-interval[/..r] using the preceding algorithm.
This takes @m) time. Then we can report the start position of every occurrende iof
S by enumeratinguftab[/], ..., suftab[r]. In other words, ifP occursz times inS, then
reporting the start position of every occurrence requiré @me in addition.

6.4. Finding all shortest unique substrings
As a second application of a top-down traversal of the Icp-interval tree, we will briefly

describe how to find all shortest unique substrings in optimal time. The problem is relevant
when designing primers for DNA sequences.
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A substring ofS is unique if it occurs only once inS. The shortest unique substring
problemis to find all shortest unique substrings&fFor examplega is the only shortest
unigue substring icac. It is easy to verify that a unique substring$ncorresponds to
a singleton interval. In particular, if is a shortest unique substring §f then there is
an ¢-interval[i..j] and a singleton child intervak..k] of [i..j] such that is a prefix of
length £ 4+ 1 of Ssuranik) andu[€] # $. As a consequence, we solve the shortest unique
substring problem by enumerating Icp-intervals. Since we are interested in Icp-intervals
of minimal Icp-value, we perform a breadth-first traversal of the Icp-interval tree, using a
gueue. Of course, we do not construct the Icp-interval tree. Instead we use the enhanced
suffix array to generate the Icp-intervals. Besides the queue, we maintaiaoemique
substrings, represented by their length and their start positigh Tthe lengthg of the
unique substrings i is minimal over all unique substrings detected so far. Initialy,
is empty andy = oo.

Suppose thati..j] is the current’-interval to be processed during the traversal. We
compute all child intervals ofi.. j] according to Algorithm 6.7. For each singleton child
interval [k..k] of [i..j] with Ssyrtanx1[€] # $, the prefix ofSsusanix) Of length¢ + 1 is a
unigue substring of. If M is empty org > £+ 1, thenM is updated by (¢ + 1, suftab[k])}
andg is assigned + 1. If M is not empty and = ¢ + 1, then we add¢ + 1, suftab[k]) to
M. Otherwise M andq are left unchanged.

Each child interva[i’.. ;'] of [i..j] with Icp-value?’ is added to the back of the queue,
whenever’ + 1 < ¢. Then we proceed with the next Icp-interval at the front of the queue,
as described above, until the queue is empty.

Computing the child intervals of an Icp-interval takes constant time. Verifying the
unigueness and maintaining the queue as well as tha/sttkes time proportional to
the number of processed Icp-intervals. In the worst case, thigis. @hus the algorithm
runs in Qn) time. However, in practice only a small number of Icp-intervals is processed,;
see Section 9.

7. Incorporating suffix links

In this section, we incorporate suffix links into our framework. As an application, we
will show how to efficiently compute matching statistics by a traversal of the Icp-interval
tree that uses suffix links. Let us first recall the definition of suffix links. In the following,
we denote a nodein the suffix tree by if and only if the concatenation of the edge-labels
on the path from the root t@ spells out the string. It is a property of suffix trees that for
any internal nodew, there is also an internal node A pointer fromaw to @ is called a
suffix link.

Recall that the inverse suffix arrayftab—! is a table such thauftab—1[suftab[g]] = ¢
for every 0< g < n; see Fig. 5.

Definition 7.1. Let Ssuttani] = aw. If index j, 0 < j < n, satisfiesSsytan[j] = @, then we
denotej by link[i] and call it the suffix link (index) of .

Lemma 7.2. If suftab[i] < n, then link[i ] = suftab—1[suftab[i] + 1].
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childtab suflink

7 | suftab | Icptab | 1. | 2. | 3.1 | r | suftab™? | Ssuftabli]

0 2 0 @ 6 2 | aaacatat$
1 3 2 L» 10| 5 6 | aacatat$
2 0 117 4]0] 10 0 | acaaacatat$
3 4 3 L 16| 7 1 | acatat$

4 6 1| 37 54— 3 | atat$

5 8 2 L+ | 8 9 7| at$

6 1 0| 2 @ 8 4 | caaacatat$
7 5 2 L 0| 5 8 | catat$

8 7 0| 7 @ 10 5 | tat$

9 9 1 L+ | 0] 10 9 |tS
10 10 0|9 10| $

Fig. 5. Suffix array of the string = acaaacatat enhanced with the Icp-table, the child-table, and the suffix link
table. The inverse suffix array is used only in the construction of the suffix link table.

Proof. Let Ssuttabfi] = aw. SinCew = Ssyttabfil+1, link[i] must satisfysuftab[link[i]] =
suftab[i] + 1. This immediately proves the lemman

Under a different name, the functidink appeared already in [14].

Definition 7.3. Given ¢-interval [i..j], the smallest Icp-intervall..r] satisfying! <
link[i] < link[ j] < r is called thesuffix link interval of [i..].

Suppose that thé-interval[i.. j] corresponds to an internal node in the suffix tree.
Then there is a suffix link from nodeo to the internal nod&. The following lemma states
that noden corresponds to the suffix link interval gf. 1.

Lemma 7.4. Given the aw-interval ¢-[i..j], its suffix link interval is the w-interval, which
haslcp-value ¢ — 1.

Proof. Let [I..r] be the suffix link interval ofi..j]. Because the Icp-intervél.. ;] is the
aw-interval,aw is the longest common prefix Gkuabyi], - - - » Ssuftab[j1- COnsequentlyy

is the longest common prefix dsufavfink(i]], - - - » Ssuftabfiink(j7]- It follows that w is the
longest common prefix fsysabi], - - - » Ssuftab[r], DECaUSE!..r] is the smallest Icp-interval
satisfyingl < link[i] < link[j] < r. That is,[l..r] is thew-interval and thus it has lcp-value
£—-1. O

7.1. Construction of the suffix link table

In order to incorporate suffix links into the enhanced suffix array, we proceed as follows.
In a preprocessing step, we compute for evemgterval[i..j] its suffix link interval[/..r]
and store the left and right boundarieandr at the first¢-index of[i.. j]. The correspond-
ing table, indexed from O te is denoted bysuflink; see Fig. 5 for an example. Note that
the Icp-value of!/..r] need not be stored because it is known t& bel. Thus, the space
requirement forsuflink is 2 - 4n bytes in the worst case. To compute the suffix link table
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suflink, the Icp-interval tree is traversed in a breadth first left-to-right manner. For every
Icp-value encountered, we hold a list of intervals of that Icp-value, which is initially empty.
Whenever art-interval is computed, it is appended to the listéaintervals; this list is
called¢-list in what follows. In the example of Fig. 2, this gives

O-list: [0..10]

1-list: [0..5],[8..9]
2-list: [0..1], [4..5],[6..7]
3-list: [2..3]

Note that thet-lists are automatically sorted in increasing order of the left-boundary of
the intervals and that the total numberéintervals in the¢-lists is at most. For every
Icp-value? > 0 and everyl-interval[i..j] in the £-list, we proceed as follows. We first
computelink[i] according to Lemma 7.2. Then, by a binary search in(the 1)-list, we
search in @ogn) time for the intervall..r] such that is the largest left boundary of all

(£ — D-intervals withl < link[i]. This interval is the suffix link interval df.. j]. Finally, we
determine in constant time the filsindex of{i.. j] according to Lemma 6.6 and stdrand

r there. Because there are less thdop-intervals and for each interval the binary search
takes @logn) time, the preprocessing phase requirgs I0gn) time. Tablesuftab—1 and

the ¢-lists require @n) space, but they are only used in the preprocessing phase and can
be deleted after the computation of the suffix link table.

Theoretically, it is possible to compute the suffix link intervals in time:Ovia the
construction of the suffix tree. But it is also possible to give a linear time algorithm without
intermediate construction of the suffix tree. We achieve this by avoiding the binary search
over the¢-lists and reducing the problem of computing the suffix link intervals to the
problem of answering range minimum queries. In contrast to the previou®@)-time
algorithm, we store the boundarieand j of an ¢-interval[i, j] at every £-index (again,
these values can be deleted once the suffix link taliflak is created).

Next, we will show that it is possible to compute the suffix link interfial-] of an
¢-interval[i, j] in constant time. To this end, we need the following lemma:

Lemma 7.5. Let [i, j] bean ¢-interval [i, j] and let [1..r] beits suffix link interval. Snce
thereisan £-index ¢ withi +1 < ¢ < j, thereisalso anindex k such that k isan (¢ — 1)-
index of [1..r] and link[i] + 1 < k < link[j].

Proof. Follows from the proof of Lemma 7.4.0

Becausé < link[i]+ 1 < link[ j] < r and¢ — 1 is the length of the longest common prefix
of link[i] andlink[ j ], the minimum value of the Icp-table in the rargjek[i]+ 1..link[ j]] is
¢ —1. Therefore, one can locate eéh— 1)-indexk of [/..r] with link[i]+ 1 < k < link[j] by
answering the range minimum query in the rafigé[i] + 1..link[ j]]. The range minimum
query is defined as follows.

Definition 7.6. Let L be an integer-array of sizewhose elements are in the rarfi@en —
1]. Let 0<i < j < n — 1. Therange minimum query RMQ(, j) asks for an index such
thati <k < j andL[k]=min{L[q]|i < g < j}.
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An RMQ can be answered in constant time provided that the atrayappropriately
preprocessed. Fortunately, the preprocessing oéquires only linear time and space;
see [4,21,31].

For the computation of suffix link intervals, one solM&8IQs for L = Icptab. As in
the previous algorithm, the Icp-interval tree is traversed in breadth-first order. Thus the
¢-intervals are processed in ascending order of their Icp-value. Supggaserval[i.. ;]
is to be processed and all intervals of Icp-vatue 1 have already been processed. First,
we store thel-interval boundaries and j at everyZ-index of[i..j]. Second, we compute
link[i] andlink[ j] according to Lemma 7.2, and evaluate RMQ(link[i] + 1, link[j]). k is
an (¢ — 1)-index of the suffix link interval ofi.. j], and thus we can look up the boundaries
[ andr of this suffix link interval at index. Finally, we storé andr in the suffix link table
at the firsté-index of [i..j]. Because every step in this procedure takes constant time and
space, the overall complexity of computing the suffix link intervals (8)O

The following subsection describes the application of suffix link intervals to compute
matching statistics.

7.2. Computing matching statistics

Matching statistics were introduced in [7] to solve the approximate string matching
problem in sublinear expected time.

Let T be a string of lengthn. A matching statistics of T w.r.t. S is a table of pairs
(;, pj), where 0< j <m — 1, such that the following holds:

1. T[j..j+1; — 1]is the longest prefix of [ j..m — 1] which occurs as a substring §f
2. Tlj..j+1j —1=S[pj..p; +1; —1].

If T[j..j+1; — 1] occurs more than once as a substring ahen there are several choices
for p;. Here it is merely required that one suph is determined. LeS = cacaccc and
T = caacacacca. Then the following table shows a matching-statisticg of.r.t. S:

j o 1 2 3 4 5 6 7 8 9
(j,pj) (200 (1,1) 4D (6,00 5,1 42 B3 29 (22 (1,3

Chang and Lawler [7] provided an algorithm to compute matching statistics in
O(n + m) time. This algorithm traverses the suffix tree$fn a single left-to-right scan
of T utilizing suffix links. In each step of the algorithm, the sufffXj..m — 1] of T
is matched against the suffix tree until a mismatch occurs or all charactdrshiawve
been completely matched. This determines a location in the suffix tree and delivers the
length/; of the longest matching prefix df[j..m — 1]. p; is the starting position of
a suffix of $$ in the subtree below the location./If > 0, then/; 1 > [; — 1, because
T[j+1.j+1;—1]=S[p; +1.p; +1; — 1]. Using suffix links one determines the loca-
tion for T'[j 4+ 1..j +{; — 1] in the suffix tree in constant amortized time and continues to
matchT'[j 4+ /;..m] against the tree.

Using the methods described in previous sections, we can adapt this algorithm to en-
hanced suffix arrays. Given the enhanced suffix arraySfavith tablessuftab, Icptab,
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childtab, andsuflink, a location in the enhanced suffix array is a triple ([i..j], g, [..r])
whereli..j] is an£-interval, and eitheg = ¢ and[i..j] = [L..r] or the following holds:
[l..r]is a child interval ofi..j] and eithefl..r] is anm-intervalandl < g <m or[l..r]isa
singleton interval and < ¢ < n —suftab[/]. Each location([i..j], ¢, [I..r]) in the enhanced
suffix array corresponds to exactly one substringSphamely S[suftab[/]..suftab[/] +
q —1].

Algorithm 6.8 can easily be modified such that

o it greedily matches a string character by character until there is no child interval for
the current character or all characters have been matched, and
e it starts matching at any location and delivers a location as a result.

The resulting algorithm is callegteedymatch. To compute the matching statistigseedy-
match is applied to each suffix’[j..m — 1] of T, from longest to shortest. In each
step, greedymatch determines a locatioii[i..j], ¢, [[..r]) corresponding to the longest
prefix of T[j..m — 1] occurring as a substring f, and we assigi; := ¢ and p; =
suftab[z] for somez € [/, r]. If j =0 or/; =0, then the matching process starts at lo-
cation([0..n], 0, [0..n]). Otherwise, we look up the suffix link intervgal..;j’] of [i..j]in
suflink[min£indices(i, j)]. If ¢ = ¢ and[i..j] = [L..r], then we proceed witk'..;’]. Oth-
erwise, we first have to “rescasuftab[/] + £..suftab[/] + ¢ — 1] from location[i’..;'].

This can easily be achieved in constant time per visited Icp-interval by a modification of
greedymatch. In this way, we obtain an algorithm that determines the matching statistics in
O(n + m) time.

8. Implementation details

In this section, we present implementation details that considerably reduce the space
requirement. Our experiments show that this entails no loss of performance, albeit the
worst case time complexities of the algorithms may be affected.

8.1. Thelcp-table

It has already been mentioned that the Icp-table requiteBydes in the worst case.
In practice, however, the Icp-table can be implemented in little more sthiaytes. More
precisely, we store most of the values of takdetab in a tablelcptab; usingn bytes.
That is, for anyi € [1, n], Icptab;[i] = max{255 Icptab[i]}. There are usually only few
entries inlcptab that are larger than or equal t 255; see Section 9. To access these
efficiently, we store them in an extra tabileab. This contains all pairg:, Icptab[i]) such
thatlcptab[i] > 255, ordered by the first component. Each entriviab requires 8 bytes.
If Icptab,[i] = 255, then the correct value ptab is found inlivtab. If we scan the values
in Icptab, in consecutive order and find a value 255, then we access the correct value in
Icptab in the next entry of tablévtab. If we access the values ieptab, in arbitrary order
and find a value 255 at indéxthen we perform a binary searchlivtab usingi as the key.
This deliverdcptabli] in O(log, |livtabl) time.
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8.2. Thechild-table

As the Icp-table, the child-table requires #ytes but in practice it can be stored in
n bytes without loss of performance. To achieve this goal, we store relative indices in
childtab. For example, ifj = childtab[i].next¢Index, then we storegj — i. The relative in-
dices are almost always smaller than 255. Hence we use only one byte for storing a value
of tablechildtab. The values> 255 are not stored. Instead, if we encounter the value 255 in
childtab, then we use a function that is equivalenggilinterval, except that it determines
a child interval by a binary search, similar to the algorithm of [29, p. 937]. Consequently,
instead of 4 bytes per entry of the child-table, only 1 byte is needed. The overall space
consumption for tablesuftab, Icptab, andchildtab is thus only @ bytes.

For a given parametef, we additionally use an extra bucket tablgtab,. This table
stores for each string of lengthd the smallest integer, such thatSsysani] is a prefix
of w. In this way, we can answer small queries of lengtk d in time O(m). For larger
queries, this bucket table allows us to locate the interval containing-tieracter prefix
P[0..d — 1] of the queryP in constant time. Then our algorithm, which searches for the
patternP in S, starts with this interval instead of the intery@l.n]. d is chosen to be the
maximal value such that tablektab,; never requires more thanbytes. The advantage
of this hybrid method is that only a small part of the suffix array is actually accessed.
Moreover, we only rarely access the values 25&ifdtab.

8.3. The suffix link table

In the algorithm of Section 7.2 we compute for tdength prefixw of each suffix of
length at leas#, a unique integer codg(w) in the rangd0, | £|¢ — 1]. These integer codes
can be computed in @:) additional time, and they are used to access tatlab,. Now
suppose we want to compute the suffix link interval of sdieterval[i..;j]. If £ <d + 1,
then this can be done in constant time by some integer arithmetic and looking up appro-
priate values in tablécktab,. Now let £ > d + 1. In this case, we access tablgflink
as described at the beginning of Section 7.1. Howevesyftab we have stored the left
boundary value we are looking for relative ttoktab[¢(w)]. This relative value is usu-
ally very small, and therefore we use 1 byte to store it. Similarly, the right boundary value
is stored relative to the left boundary value, which also allows to reduce the correspond-
ing space to 1 byte. Altogether, the suffix link taklélink requires only 2 bytes in our
implementation.

9. Experimental results
For our experiments, we collected a set of files of different sizes and types:
E. coli: The complete genome of the bacterilischerichia coli, strain K12. This is a
DNA sequence of length,839,221. The alphabet size is 4.

Yeast: The complete genome of the baker’s yeBeicharomycescerevisiae, i.e., a DNA
sequence of length 1256,300. The alphabet size is 4.
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Hs21: The complete sequence of chromosome 21 of homo sapiens. The length is
33,917,895. The alphabet size is 4.

Swissprot:  The complete collection of protein sequences from the Swissprot database (re-
lease 38). The total size of all sequences idl89964. The alphabet size is 20.

Shaks: A collection of the complete works of William Shakespeare. The total size is
5,582,655 bytes. The alphabet size is 92.

In addition we collected four different pairs of similar genomes:

Sreptococuss2: The complete genomes of two strains &feptococcus pneumoniae
(length 2,160,837 and 2,038,615).

E. coli 2. E. coli (see above) and the complete genome of a different strain of this bac-
terium (E. coli 0157:H7, length 5,528,445).

Yeast 2. Yeast(see above) and the complete genome of a different kind of y8gxirtbe,
length 12534,386).

Human 2. Hs21(see above) and chromosome 22 of homo sapiens (lengd2B305).

Prior to all computations described below, we constructed the enhanced suffix array for all
input sequences. Each of the tables comprising the index is stored on a different file. The
construction was done by a program that is based on the suffix sorting algorithm of [5]. This
program uses about 50% less space than the best programs constructing suffix trees (see
below). The enhanced suffix array is constructed in about the same time as the suffix tree.
We do not give more details here, since we want to focus on the application of enhanced
suffix arrays.

The running times reported here are for a SUN-Sparc computer equipped with 32 giga-
bytes RAM and a 950 Mhz CPU. For our tests, we only needed at most 3165 megabytes of
memory; see Table 3.

9.1. Computing repeats and maximal unique matches

In our first experiment we ran different programs computing repeats and maximal
matches. The name of a program based on enhanced suffix arrays always begins with the
prefix esa.

e REPuter andesarep implement the algorithm of Gusfield (see Section 5.1) to com-
pute maximal repeated pailREPuter is based on suffix trees (improved linked list
representation of [25]).

e esasupermax computes supermaximal repeats. It implements the algorithm described
in Section 3.3.

o unique-match andesamum computeMUMSs. unique-matchis part of the original distri-
bution of MUMmer (version 1.0) [8]. It is based on suffix treemique-match as well
asREPuter construct the suffix tree in main memory (usingn®time). esamum uses
the algorithm described at the end of Section 3.4.
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Table 2

Running times (in seconds) and space requirement (in megabytes) for computing maximal repeated pairs and
supermaximal repeats. The column titled #reps gives the number of repeats ofiefigthe space requirement

is independent of, hence it is given in a separate table

4 Running time forE. coli (n = 4,639221) in sec. Running time foyeast (» = 12,156,300) in sec.
maximal repeated pairs esasupermax maximal repeated pairs esasuper max
#reps REPuter esarep #reps #reps REPuter esarep #reps
20 7799 3.28 0.79 899 0.16 175455 9.71 2.23 6432 0.47
23 5206 3.28 0.78 642 0.15 84115 9.63 2.16 4069 0.47
27 3569 3.31 0.79 500 0.15 41400 9.72 2.14 2813 0.45
30 2730 3.30 0.80 456 0.15 32199 9.69 2.14 2374 0.46
40 840 3.29 0.79 281 0.15 20767 9.57 2.13 1674 0.44
50 607 3.29 0.79 196 0.14 16209 9.64 2.12 1354 0.44
4 Running time for Hs21{(= 33,917,895) in sec. Space requirement in megabytes
maximal repeated pairs esasupermax REPuter esarep esasupermax

#reps REPuter esarep #reps E. coli 61 31 31
20 40193973 54.63 24.00 188695 1.50 Yeast 160 83 83
23 19075117 51.78 14.62 138523 1.44 Hs21 446 227 227
27 8529120 47.97 9.88 98346 1.39
30 4787086 46.54 8.15 77695 1.34
40 732822 45.06 6.21 35719 1.23
50 149482 44.33 5.85 16392 1.19
Table 3

Running times (in seconds) and space consumption (in megabytes) for comuiiMg of length> 20. The
column titled #MUMs gives the number dflUMs. The time given founique-match does not include suffix tree
constructionesamum reads the enhanced suffix array from different files via memory mapping

Genome pair Total size MUMs unigque-match esamum

time space time space
Streptococuss 2 4,199,453 6613 9.0 196 0.33 30
E. coli 2 10,107,957 10817 30.7 472 0.69 62
Yeast 2 24,690,687 2536 118.2 1154 0.66 144
Human 2 67,739,601 217014 430.1 3165 2.34 389

All programs based on suffix arrays use memory mapping to access the enhanced suffix
array from the different files. Of course, a file is mapped into main memory only if the
table it stores is required for the particular algorithm. We applied the three programs for
the detection of repeats o coli, Yeast, andHs21. Additionally, we appliedinique-match
andesamumto the pairs of genomes listed above.

The results of applying the different programs to the different data sets are shown in
Tables 2 and 3. For a fair comparison, we report the running timeEbfuter and of
unique-match without suffix tree construction.

The running time oksasupermax is almost independent of the minimal length of the
supermaximal repeats computed. Since the algorithm is so simple, the main part of the
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running time is the input and output. The strmat-package of [22] implements a more com-
plicated algorithm than ours for the same task. For example, when applEdctbi, it
requires 19 sec. (without suffix tree construction) to compute all 944,546 supermaximal
repeats of length at least 2. For this tasksupermax requires 0.82 seconds due to the
large size of the output.

The comparison aésarep andREPuter underlines the advantages of the enhanced suffix
array over the suffix treeesarep used about halve of the spaceREPuter. If there are
many repeats, then the computation is dominated by the postprocessing of the repeats (e.g.,
computing E-values), which is identical in both programs. Hessaep is only 2—3 times
faster tharREPuter in these cases. In generatarep is 4-5 times faster thaREPuter.

This is due to the improved cache behavior achieved by the linear scanning of the tables
suftab, Icptab, andbwttab.

The running times and space results shown in Table 3 reveadddratimis much faster
thanunique-match, using at most 15% of the space.

All'in all, the experiments show that our programs based on enhanced suffix arrays de-
fine the state-of-the-art in computing different kinds of repeats and maximal matches. The
programsesarep, esasupermax, andesamum are available as part of thématch-software
package, sekttp://www.vmatch.de

9.2. Searching for patterns

For our second experiment, we ran three different programs for answering enumeration
queries:

e streematch is based on the improved linked list representation of suffix trees, as de-
scribed in [25].

e mamy is based on suffix arrays and uses the algorithm of [29] with additional buckets
to speedup the searches. We used the original program code developed by Gene Myers.

e esamatch is based on enhanced suffix arrays (tablggb, Icptab, childtab) and uses
Algorithm 6.8.

The programstreematch andmamy first construct the index in main memory and then
perform pattern searchemsamatch accesses the enhanced suffix array from the different
files via memory mapping.

Table 4 shows the running times in seconds for the different programs when search-
ing for one million patterns. This seems to be a large number of queries to be answered.
However, at least in the field of genomics, it is relevant; see [15]. The shortest running
times in Table 4 are shown in bold face. The time for index construction is not included.
Patterns were generated according to the following strategy: For each input$tohg
lengthn we randomly samplegl = 1,000,000 substrings, s2, .. ., s, of different lengths
from S. The lengths were evenly distributed over different interyaisipl, maxpl], where
(minpl, maxpl) € {(20, 30), (30, 40), (40,50)}. Fori € [1, p], the programs were called to
search for patterp;, wherep; =s;, if i is even, andp; is the reverse of;, if i is odd.
Reversing a string; simulates the case that a pattern search is often unsuccessful.
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Table 4

Running times (in seconds) and space requirement (in megabytes) for one million enumeration queries searching
for exact patterns in the input stringsinpl andmaxpl are the minimal and maximal size of the patterns searched

for

File Running time fominpl = 20, maxpl = 30 Running time fominpl = 30, maxpl = 40
streemach mamy esamatch streemach mamy esamatch
E. coli 9.47 5.56 4.48 9.63 5.70 4.69
Yeast 12.42 8.26 5.37 12.56 8.46 5.80
Hs21 20.15 12.50 7.23 20.43 12.69 7.30
Swissprot 41.78 9.55 6.22 40.80 10.09 6.25
Shaks 15.61 4.29 72.44 15.78 4.37 66.60
Running time fominpl = 40, maxpl = 50 Space requirement
streemach mamy esamatch streemach mamy esamatch
E. coli 9.86 5.87 4.85 56 40 47
Yeast 13.34 8.63 5.74 146 106 120
Hs21 21.22 12.88 7.61 407 296 327
Swissprot 42.96 9.83 6.39 320 288 281
Shaks 15.88 4.49 67.16 52 48 60

As expected, the running times stfeematch and esamatch depend on the alphabet
size. This is not true fomamy. For Shaks, mamy is much faster than the other programs,
which we explain by the large alphabet. For the other fidsamatch is always more than
twice as fast astreematch and slightly faster thamamy. All in all, this experiment shows
that for small alphabetssamatch can compete with the other programs and is not only of
theoretical interest.

9.3. Searching for minimal unique substrings

For our third experiment, we implemented the breadth first traversal algorithm of Sec-
tion 6.4 to find shortest unique substrings. We appliedH.tcoli andYeast. ForE. coli our
program computed three shortest unique substrings, each of length 7, in 0.09 seconds. It
processed 11,392 Icp-intervals (0.38% of all 2,978,098 Icp-intervals in the corresponding
Icp-interval tree). Folveast our program computed 383 shortest unique substrings, each
of length 9, in 0.75 seconds. It processed 92,863 Icp-intervals (1.2% of all 7,904,703 Icp-
intervals in the corresponding Icp-interval tree). To demonstrate the efficiency of our solu-
tion to the shortest unique substring problem, we implemented a straightforward method
to solve the same problem by enumerating all lcp-intervalsB-ooli, the straightforward
method delivers the result in 0.79 seconds, while it takes 3.47 second=msor

9.4. Computing matching statistics

For our final experiment, we applied two programs computing matching statistics to the
pairs of genomes listed at the beginning of this section (Table 5). The prcajreams
is based on the improved linked list implementation of suffix trees, while our program
esams uses the enhanced suffix arrays as described in Section 7.2. The experiments show a
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Table 5

Running times (in seconds) and space consumption (in megabytes) for computing matching statistics. The time
given for streems does not include suffix tree constructi@sams reads the enhanced suffix array from different

files via memory mapping. The space requirement for the matching statistics is not included

Genome pair Total length streems esams

time space time space
Sreptococuss 2 4,199,453 4.1 30 111 21
E. coli 2 10,107,957 13.3 65 18.9 43
Yeast 2 24,690,687 41.0 170 43.4 109
Human 2 67,739,601 169.2 472 314.0 294

trade-off between time and space consumption: Wdsens uses 30—40% less space than
streems, the latter program is up to three times faster. We explain this by the slow lookup
of the suffix link interval in the enhanced suffix array. It remains an open problem to find
an alternative way to locate suffix link intervals more efficiently.

10. Conclusionsand related work

The contribution of this article is twofold: First, it has been shown that every algorithm
that uses a suffix tree as data structure can systematically be replaced with an algorithm that
uses an enhanced suffix array and solves the same problemsantedime complexity.

This shows that our new approach to solving string processing problems is interesting from
atheoretical point of view. Second, we have shown that the space requirementin large scale
applications such as the comparison of whole genomes can drastically be reduced by using
enhanced suffix arrays instead of suffix trees. This makes the algorithms very valuable in
practice.

All the algorithms presented in this article and others such as the computation of all tan-
dem repeats of a string (see [1]) have been carefully implemented and the space consump-
tion has been reduced to a few bytes per input character. The precise space consumption
depends on the application; see Table 6 for an overview. Although the practical implemen-
tation does not always achieve the worst case time complexity that is possible without space
reduction, we did not observe any loss of performance. In fact, our experiments show that
the programs can handle large data sets very efficiently. Some of the algorithms described
here are implemented in the software tvatatch; seehttp://www.vmatch.de

We would like to mention that the very recent results concerRM@s [4,21,31] (see
Section 7.1) can be used to obtain a different method to simulate top-down traversals of
a suffix tree, i.e., without the construction of thigldtab. In order to compute the child
intervals of arg-intervalli.. j], it suffices to compute theindices offi.. j]; see Lemma6.1.

By Definition 3.1, thef-indicesii < iz < --- < iy of [i..j] are the indices with minimum
Icp-value in the rang@ + 1.. j]. Suppose that eveRMQ returns the first indek such that
Icptab[k] is minimum in the given range (according to [21], one sRMQ can be answered
in constant time). Then theindices offi.. j] can be found by successively computing=
RMQG + 1, j), iz := RMQ(i1 + 1, j), ..., ix := RMQ(ix—1 + 1, ), until RMQ(ix + 1, j)
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Table 6
Summary of the tables required for the applications mentioned in the paper. The presgramm, for
example, requires an enhanced suffix array consisting of the tsigtes, Icptab, andbwttab

Application Enhanced suffix array
suftab Icptab childtab suflink S bwttab

4n bytes nbytes nbytes 2 bytes nlog|X|bits nlog|X| bits
esasupermax Vi Vv v
esamum Vv Vv Vv
esarep v v v
Ziv—Lempel N v
esamatch Vv N Vv N
shortest unique sub.  / v Vv
esams v v v v v

returns a valug such thalcptab[g¢] # £. Future work will show whether this approach is
also of practical interest.

Clearly, it would be desirable to further reduce the space requirement of the suffix ar-
ray. Recently, interesting results in this direction have been obtained. The most notable
ones are the compressed suffix array introduced by Grossi and Vitter [14] and the so-called
opportunistic data structure devised by Ferragina and Manzini [10]. These data structures
reduce the space consumption considerably. Because the papers cited above solely focus
on pattern matching, we can only compare their pattern matching results with ours. Due
to the compression, the above-mentioned approaches do not allow to answer enumeration
queries in @m + z) time; instead they require @ + zlog® n) time, wheree > 0 is a
constant Worse, experimental results [11] show that the gain in space reduction has to
be paid by considerably slower pattern matching; this is true even for decision queries.
According to [11], the opportunistic index is 8—-13 times more space efficient than the suf-
fix array but string matching based on the opportunistic index is 16—35 times slower than
their implementation based on the suffix array. So there is a trade-off between time and
space consumption. In contrast to that, suffix arrays can be queried at speeds comparable
to suffix trees, while being much more space efficient than these. Let us briefly compare
our retrieval times with those of an implementation of the opportunistic data structure [11].
According to [11], it takes 7.6 seconds to answer 1000 enumerative queries searching for
random patterns of length between 8 and 1&.iroli (on a Pentium 600 Mhz). By con-
trast, our progranesamatch requires only 0.003 seconds for the same task (on a Pentium
933 Mhz). Under the (conservative) assumption that a 933 MHz processor is 1.5 times
faster than a 600 Mhz processor, a comparison of the preceding running times shows that
our program is more than 1650 times faster than that of [11]. However, a closer look at the
experimental results of [11] reveals some inconsistencies with our results. For example,
[11] report that their program based on suffix arrays requires 0.6 seconds to answer 1000
enumerative queries searching for random patterns of length between 8 ané&.1dlin

3 Ferragina and Manzini [12] also proposed a compressed data structure that remove$tHfadtm from
the search time at the cost of adding &ladactor to the space. However, no experiments with this data structure
are reported.
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(on a Pentium 600 Mhz). By contrastamy takes only 0.02 seconds for the same task. Itis
not clear where these differences come from. The authors of [11] may have used a different
algorithm thanmamy, or they may have implemented the same algorithm less efficiently
than Gene Myers did.

More recently, Hon and Sadakane [18] and Sadakane [31] showed that compressed
suffix arrays can be used to solve string processing tasks like computivjs of
two sequences. However, it remains an open problem to develop a software tool based on
compressed suffix arrays that can compete MthMmer or ours. Moreover, a systematic
approach like ours has not yet been developed for compressed suffix arrays.
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