
Information and Computation 213 (2012) 13–22
Contents lists available at SciVerse ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Bidirectional search in a string with wavelet trees and bidirectional
matching statistics

Thomas Schnattinger ∗, Enno Ohlebusch, Simon Gog

Institute of Theoretical Computer Science, University of Ulm, D-89069 Ulm, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 2 February 2012

Keywords:
String matching
Bidirectional search
Matching statistics

Searching for genes encoding microRNAs (miRNAs) is an important task in genome analysis.
Because the secondary structure of miRNA (but not the sequence) is highly conserved,
the genes encoding it can be determined by finding regions in a genomic DNA sequence
that match the structure. It is known that algorithms using a bidirectional search on the
DNA sequence for this task outperform algorithms based on unidirectional search. The
data structures supporting a bidirectional search (affix trees and affix arrays), however,
are rather complex and suffer from their large space consumption. Here, we present a
new data structure called bidirectional wavelet index that supports bidirectional search with
much less space. With this data structure, it is possible to search for candidates of RNA
secondary structural patterns in large genomes, for example the complete human genome.
Another important application of this data structure is short read alignment. As a second
contribution, we show how bidirectional matching statistics can be computed in linear time.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

It is now known that microRNAs (miRNAs) regulate the expression of many protein-coding genes and that the proper
functioning of certain miRNAs is important for preventing cancer and other diseases. microRNAs are RNA molecules that
are encoded by genes from whose DNA they are transcribed, but they are not translated into protein. Instead each primary
transcript is processed into a secondary structure (consisting of approximately 70 nucleotides) called a pre-miRNA and fi-
nally into a functional miRNA. This so-called mature miRNA is 21–24 nucleotides long, so a gene encoding a miRNA is much
longer than the processed mature miRNA molecule itself. Mature miRNA molecules are either fully or partially complemen-
tary to one or more messenger RNA (mRNA) molecules, and their main function is to down-regulate gene expression. The
first miRNA was described by Lee et al. [1], but the term miRNA was only introduced in 2001 when the abundance of these
tiny regulatory RNAs was discovered; see [2] for an overview. miRNAs are highly conserved during evolution, not on the
sequence level, but as secondary structures. Thus, the task of finding the genes coding for a certain miRNA in a genome
is to find and further investigate all regions in the genomic DNA sequence that match its structural pattern. Because the
structural pattern often consists of a hairpin loop and a stem (which may also have bulges), the most efficient algorithms
first search for candidate regions matching the loop and then try to extend both ends by searching for complementary base
pairs A–U, G–C, or G–U that form the stem. Because T (thymine) is replaced with U (uracil) in the transcription from DNA to
RNA, one must search for the pairs A–T, G–C, or G–T in the DNA sequence. For example, if the loop is the sequence GGAC,
then it is extended by one of the four nucleotides to the left or to the right, say by G to the right, and all regions in the
DNA sequence matching GGACG are searched for (by forward search). Out of these candidate regions only those survive that

* Corresponding author. Fax: +49 731 50 24102.
E-mail addresses: thomas.schnattinger@uni-ulm.de (T. Schnattinger), enno.ohlebusch@uni-ulm.de (E. Ohlebusch), simon.gog@uni-ulm.de (S. Gog).
0890-5401/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2011.03.007

http://dx.doi.org/10.1016/j.ic.2011.03.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:thomas.schnattinger@uni-ulm.de
mailto:enno.ohlebusch@uni-ulm.de
mailto:simon.gog@uni-ulm.de
http://dx.doi.org/10.1016/j.ic.2011.03.007

14 T. Schnattinger et al. / Information and Computation 213 (2012) 13–22
i SA BWT SSA[i]
1 19 n $
2 3 l _anele_lepanelen$
3 9 e _lepanelen$
4 4 _ anele_lepanelen$
5 13 p anelen$
6 8 l e_lepanelen$
7 1 $ el_anele_lepanelen$
8 6 n ele_lepanelen$
9 15 n elen$
10 17 l en$
11 11 l epanelen$
12 2 e l_anele_lepanelen$
13 7 e le_lepanelen$
14 16 e len$
15 10 _ lepanelen$
16 18 e n$
17 5 a nele_lepanelen$
18 14 a nelen$
19 12 e panelen$

Fig. 1. Suffix array and Burrows–Wheeler-transform of T = el_anele_lepanelen$.

can be extended by C or T to the left because only C and T (U, respectively) form a base pair with G, and the stem is formed
by complementary base pairs. In other words, in the next step one searches for all regions in the DNA sequence match-
ing either CGGACG or TGGACG (by backward search). Such a search strategy can be pursued only if bidirectional search is
possible. Mauri and Pavesi [3] used affix trees for this purpose, while Strothmann [4] employed affix arrays.

Research on data structures supporting bidirectional search in a string started in 1995 with Stoye’s diploma thesis on
affix trees (the English translation appeared in [5]), and Maaß [6] showed that affix trees can be constructed on-line in
linear time. Basically, the affix tree of a string S comprises both the suffix tree of S (supporting forward search) and
the suffix tree of the reverse string Srev (supporting backward search). It requires approximately 45n bytes, where n is
the length of S . Strothmann [4] showed that affix arrays have the same functionality as affix trees, but they require only
18n–20n bytes (depending on the implementation). An affix array combines the suffix arrays of S and Srev , but it is a
complex data structure because the interplay between the two suffix arrays is rather difficult to implement. In this article,
we present a new data structure called bidirectional wavelet index that consists of the wavelet tree of the Burrows–Wheeler
transformed string of S (supporting backward search) and the wavelet tree of the Burrows–Wheeler transformed string of
Srev (supporting forward search). In contrast to affix arrays, however, the interplay between the two is easy to implement.
Our experiments show that the bidirectional wavelet index decreases the space requirement by a factor of 23 (compared to
affix arrays), making it possible to search bidirectionally in very large strings.

Independently and contemporaneously, Lam et al. [7] presented a similar data structure, which they call bidirectional
BWT. Their main motivation was short read alignment, so they use bidirectional search to find approximate matches of
relatively short DNA sequences within a whole genome. It turns out that the two approaches use the same basic idea, but a
closer look reveals that none is superior to the other. On the one hand, one search step with the bidirectional wavelet index
takes O (logσ) time while it takes O (σ) time with the bidirectional BWT, where σ is the size of the underlying alphabet.
On the other hand, the bidirectional BWT uses less space than the bidirectional wavelet index.

Very recently, it was shown that the matching statistics ms of a string S2 w.r.t. another string S1 can be computed in
linear time by backward search [8], where ms[i] is the length of the longest substring of S2 starting at position i that
matches a substring somewhere in S1. Matching statistics were introduced by Chang and Lawler [9] in the context of
approximate string matching. Among other things, they were used in the computation of string kernels [10] and the design
of DNA chips [11]. We define bms[i] to be the length of the longest substring of S2 containing position i that matches a
substring somewhere in S1, and call these values the bidirectional matching statistics of S2 w.r.t. S1. In the second part of
this article, we show how bidirectional matching statistics can be computed in linear time.

2. Preliminaries

Let Σ be an ordered alphabet whose smallest element is the so-called sentinel character $. If Σ consists of σ characters
and is fixed, then we may view Σ as an array of size σ such that the characters appear in ascending order in the array
Σ[1..σ], i.e., Σ[1] = $ < Σ[2] < · · · < Σ[σ]. In the following, S is a string of length n over Σ having the sentinel character
at the end (and nowhere else). For 1 � i � n, S[i] denotes the character at position i in S . For i � j, S[i.. j] denotes the
substring of S starting with the character at position i and ending with the character at position j. Furthermore, Si denotes
the ith suffix S[i..n] of S . The suffix array SA of the string S is an array of integers in the range 1 to n specifying the
lexicographic ordering of the n suffixes of the string S , that is, it satisfies SSA[1] < SSA[2] < · · · < SSA[n]; see Fig. 1 for an
example. In the following, SA−1 denotes the inverse of the permutation SA. The suffix array was introduced by Manber
and Myers [12]. In 2003, it was shown independently and contemporaneously by three research groups that a direct linear

T. Schnattinger et al. / Information and Computation 213 (2012) 13–22 15
agatcag$
cyclic−→
shifts

agatcag$
gatcag$a
atcag$ag
tcag$aga
cag$agat
ag$agatc
g$agatca
$agatcag

sort−→

$agatcag
ag$agatc
agatcag$
atcag$ag
cag$agat
g$agatca
gatcag$a
tcag$aga

last−→
column

gc$gtaaa

Fig. 2. Construction of the Burrows and Wheeler transform of the string agatcag$.

time construction of the suffix array is possible. To date, over 20 different suffix array construction algorithms are known;
see [13] for details. Forward search on a suffix array can be done in O (log n) time per character by binary search [12] or in
O (logσ) time per character using extra space [14].

2.1. Burrows and Wheeler transform

The reversible Burrows and Wheeler transform [15] has been developed as a first step in a data compression algorithm.
It does not compress the data itself, but rearranges the input sequence into a more compressible form by tending to group
same characters together. In virtually all cases, the Burrows–Wheeler transformed string compresses much better than the
original string. It is today commonly used in data compression tools like bzip2 [16] and in text indexing.

Given the input string S[1..n], having the sentinel character $ as its last character, the transformation consists of three
steps; see Fig. 2 for an example.

1. Form a conceptual matrix M′ whose rows are the cyclic shifts of string S .
2. Compute the matrix M by sorting the rows of M′ lexicographically.
3. Construct the transformed string BWT by taking the last column of M.

So the result of the transformation is a sequence BWT of n characters, where the i-th character is the last character of
the i-th sorted rotation of S . Note the strong relationship between the Burrows and Wheeler transform and the suffix array
SA of S . SA[k] specifies the suffix of lexicographical order k, which is a prefix of the k-th row of M. Consequently, the
string BWT can alternatively also be defined using SA as

BWT[i] =
{

S[SA[i] − 1] if SA[i] �= 1,

$ otherwise.

The first and the last column of the conceptual matrix M are usually called F and L, respectively. The mapping L F (i) is
defined by L F (i) = C[c] + O cc(c, i) where c = BWT[i], C[c] is the overall number (of occurrences) of characters in S which
are strictly smaller than c, and O cc(c, i) is the number of occurrences of the character c in BWT[1..i]. It is called last-to-first
mapping, because the character L[i] is located in F at position L F (i). So it is clear that L F (i) = SA−1[SA[i]− 1] for all i with
SA[i] �= 1 and L F (i) = 1 otherwise, which explains its central role in the following index. Note that our array BWT is exactly
the same as the column L of M.

Details about the Burrows and Wheeler transform and related topics can for instance be found in [17].

2.2. Backward search

Ferragina and Manzini [18] showed that it is possible to search a pattern character-by-character backwards in the suffix
array SA of string S , without storing SA. Their so-called FM-index can be implemented such that a search for a pattern
of length m takes only O (m) time [19], and it works as follows. The search process has two parts. The first one is called
backwardSearch and determines the interval corresponding to the pattern. The second is locate, which identifies the positions
of these occurrences in the text. Both operations are based on the array C and the function O cc(c, i).

In the following, the ω-interval in SA of a substring ω of S is the interval [i.. j] such that ω is a prefix of SSA[k] for all
i � k � j, but ω is not a prefix of any other suffix of S . So the locate step must return the values of SA in the interval [i.. j].
Using the L F -mapping it suffices to store only n/α sampled values for some α > 1 rather than the complete suffix array,
because with the relationship SA[L F (i)] = SA[i] − 1 the missing values can be reconstructed in α/2 steps (on average).

For example, the le-interval in the suffix array of Fig. 1 is the interval [13..15]. Searching backwards in the string S =
el_anele_lepanelen$ for the pattern le works as follows. By definition, backward search for the last character of the
pattern starts with the ε-interval [1..n], where ε denotes the empty string. Algorithm 1 shows the pseudo-code of one
backward search step. In our example, backwardSearch(e, [1..19]) returns the e-interval [6..11] because C[e] + O cc(e,1 −
1) + 1 = 5 + 0 + 1 = 6 and C[e] + O cc(e,19) = 5 + 6 = 11. In the next step, backwardSearch(l, [6..11]) delivers the le-
interval [13..15] because C[l] + O cc(l,6 − 1) + 1 = 11 + 1 + 1 = 13 and C[l] + O cc(l,11) = 11 + 4 = 15.

In the last step locate, the three values of SA[13],SA[14],SA[15] have to be computed from the sampled suffix array.
Suppose the sampling parameter α is 4, so the five values SA[1],SA[5], . . . ,SA[17] are stored explicitly. The first value
SA[13] is one of the stored samples, so it can immediately be returned as a result. The second value SA[14] does not

16 T. Schnattinger et al. / Information and Computation 213 (2012) 13–22
Algorithm 1 Given c ∈ Σ and an ω-interval [i.. j], backwardSearch(c, [i.. j]) returns the cω-interval if it exists, and ⊥ other-
wise.
backwardSearch(c, [i.. j])

i ← C[c] + O cc(c, i − 1) + 1
j ← C[c] + O cc(c, j)
if i � j then return [i.. j]
else return ⊥

Fig. 3. Conceptual illustration of the wavelet tree of the string BWT = nle_pl$nnlleee_eaae. Only the bit vectors are stored; the corresponding strings
are shown for clarity.

belong to the sampled values, so we check whether the value of SA at position L F (14) = 9 is stored. That being the case,
we compute SA[14] = SA[9] + 1 = 15 + 1 = 16. This procedure is repeated for SA[15] = 10. We get as a result that the
pattern le occurs in S at positions 7, 10 and 16.

2.3. Wavelet tree

With the wavelet tree introduced by Grossi et al. [20], the computation of a value of the function O cc, and so each step
of the backward search in string S , takes O (logσ) time as we shall see next. We say that an interval [l..r] is an alphabet
interval, if it is a subinterval of [1..σ], where σ = |Σ |. For an alphabet interval [l..r], the string BWT[l..r] is obtained from the
Burrows–Wheeler transformed string BWT of S by deleting all characters in BWT that do not belong to the sub-alphabet
Σ[l..r] of Σ[1..σ]. As an example, consider the string BWT = nle_pl$nnlleee_eaae and the alphabet interval [1..4].
The string BWT[1..4] is obtained from nle_pl$nnlleee_eaae by deleting the characters l, n, and p. Thus, BWT[1..4] =
e_$eee_eaae.

The wavelet tree of the string BWT over the alphabet Σ[1..σ] is a balanced binary search tree defined as follows. Each
node v of the tree corresponds to a string BWT[l..r] , where [l..r] is an alphabet interval. The root of the tree corresponds
to the string BWT = BWT[1..σ] . If l = r, then v has no children. Otherwise, v has two children: its left child corresponds to
the string BWT[l..m] and its right child corresponds to the string BWT[m+1..r] , where m = 	 l+r

2
. In this case, v stores a bit
vector B[l..r] whose i-th entry is 0 if the i-th character in BWT[l..r] belongs to the sub-alphabet Σ[l..m] and 1 if it belongs
to the sub-alphabet Σ[m + 1..r]. To put it differently, an entry in the bit vector is 0 if the corresponding character belongs
to the left subtree and 1 if it belongs to the right subtree; see Fig. 3. Moreover, each bit vector B in the tree is preprocessed
such that the queries rank0(B, i) and rank1(B, i) can be answered in constant time [21], where rankb(B, i) is the number
of occurrences of bit b in B[1..i]. Obviously, the wavelet tree has height O (logσ). Because in an actual implementation it
suffices to store only the bit vectors, the wavelet tree requires only n logσ bits of space plus o(n logσ) bits for the data
structures that support rank-queries in constant time.

The query O cc(c, i) can be answered by a top-down traversal of the wavelet tree in O (logσ) time. As an example, we
compute O cc(e,16) on the wavelet tree of the string BWT = nle_pl$nnlleee_eaae from Fig. 3. Because e belongs to
the first half Σ[1..4] of the ordered alphabet Σ , the occurrences of e correspond to zeros in the bit vector at the root,
and they go to the left child, say node v1, of the root. Now the number of e’s in BWT[1..7] = nle_pl$nnlleee_eaae
up to position 16 equals the number of e’s in the string BWT[1..4] = e_$eee_eaae up to position rank0(B[1..7],16). So
we compute rank0(B[1..7],16) = 8. Because e belongs to the second quarter Σ[3..4] of Σ , the occurrences of e correspond
to ones in the bit vector at node v1, and they go to the right child, say node v2, of v1. The number of e’s in BWT[1..4] =
e_$eee_eaae up to position 8 is equal to the number of e’s in BWT[3..4] = eeeeeaae up to position rank1(B[1..4],8) = 5.
In the third step, we must go to the right child of v2, and the number of e’s in BWT[3..4] = eeeeeaae up to position 5

T. Schnattinger et al. / Information and Computation 213 (2012) 13–22 17
Algorithm 2 For a character c, an index i, and an alphabet interval [l..r], the function O cc′(c, i, [l..r]) returns the number of
occurrences of c in the string BWT[l..r][1..i], unless l = r (in this case, it returns i).
O cc′(c, i, [l..r])

if l = r then return i
else

m = 	 l+r
2

if c � Σ[m] then
return O cc′(c, rank0(B[l..r], i), [l..m])

else
return O cc′(c, rank1(B[l..r], i), [m + 1..r])

Fig. 4. Bidirectional wavelet index of S = el_anele_ lepanelen$, consisting of the backward index (left) and the forward index (right).

equals the number of e’s in BWT[4..4] = eeeeee up to position rank1(B[3..4],5) = 5. Since BWT[4..4] consists solely of e’s
(by the way, that is the reason why it does not appear in the wavelet tree) the number of e’s in BWT[4..4] up to position 5
is 5. Pseudo-code for the computation of O cc(c, i) = O cc′(c, i, [1..σ]) can be found in Algorithm 2.

3. Bidirectional search

The bidirectional wavelet index of a string S consists of

• the backward index, supporting backward search based on the wavelet tree of the Burrows–Wheeler transformed string
BWT of S , and

• the forward index, supporting backward search on the reverse string Srev of S (hence forward search on S) based on the
wavelet tree of the Burrows–Wheeler transformed string BWTrev of Srev .

The difficult part is to synchronize the search on both indexes. To see this, suppose we know the ω-interval [i.. j] in
the backward index as well as the ωrev -interval [irev .. jrev] in the forward index, where ω is some substring of S . Given
[i.. j] and a character c, backwardSearch(c, [i.. j]) returns the cω-interval in the backward index (cf. Algorithm 1), but it
is unclear how the corresponding interval, the interval of the string (cω)rev = ωrev c, can be found in the forward index.
Vice versa, given [irev .. jrev] and a character c, backward search returns the cωrev -interval in the forward index, but it is
unclear how the corresponding ωc-interval can be found in the backward index. Because both cases are symmetric, we
will only deal with the first case. So given the ωrev -interval, we have to find the ωrev c-interval in the forward index.
As an example, consider the bidirectional wavelet index of the string S = el_anele_lepanelen$ in Fig. 4, and the
substring ω = e = ωrev . The e-interval in both indexes is [6..11]. The le-interval in the backward index is determined by
backwardSearch(l, [6..11]) = [13..15] and the task is to identify the el-interval in the forward index.

18 T. Schnattinger et al. / Information and Computation 213 (2012) 13–22
All we know is that the suffixes of Srev are lexicographically ordered in the forward index. In other words, the ωrev c-
interval [p..q] is a subinterval of [irev .. jrev] such that (note that |ωrev | = |ω|)

• Srev [SArev [k] + |ω|] < c for all k with irev � k < p,
• Srev [SArev [k] + |ω|] = c for all k with p � k � q,
• Srev [SArev [k] + |ω|] > c for all k with q < k � jrev .

In the example of Fig. 4,

• Srev [SArev [k] + 1] = $ < l for k = 6,
• Srev [SArev [k] + 1] = l for all k with 7 � k � 9,
• Srev [SArev [k] + 1] = n > l for all k with 9 < k � 11.

Unfortunately, we do not know these characters, but if we would know the number smaller of all occurrences of characters
at these positions that precede c in the alphabet, together with the size of the new cω-interval [inew .. jnew] in the backward
index, then we could identify the unknown ωrev c-interval [p..q] by p = irev + smaller and q = p + (jnew − inew). In our
example, the knowledge of smaller = 1 and [inew .. jnew] = [13..15] would yield the el-interval [6 + 1..(6 + 1)+ (15 − 13)] =
[7..9]. The key observation is that the multiset of characters {Srev [SArev [k]+ |ω|] : irev � k � jrev} coincides with the multiset
{BWT[k] : i � k � j}. In the example of Fig. 4, {Srev [SArev [k]+ 1]: 6 � k � 11} = {$, l, l, l, n, n} = {BWT[k] : 6 � k � 11}. In
other words, it suffices to determine the number smaller of all occurrences of characters in the string BWT[i.. j] that precede
character c in the alphabet Σ , and the new interval [inew .. jnew] in the backward index.

Here we present a new top-down traversal of the wavelet tree of BWT. Given a character c and an interval [i.. j], it is
able to compute the three values i′ = O cc(c, i − 1) + 1, j′ = O cc(c, j), and smaller. Note that the new interval can then
directly be determined by [inew .. jnew] = [C[c] + i′..C[c] + j′].

As an example, we compute the values of O cc(l,5)+ 1, O cc(l,11) and smaller for the interval [6..11] and the character
l. Because l belongs to the second half Σ[5..7] of the ordered alphabet Σ , the occurrences of l correspond to ones in
the bit vector at the root of the wavelet tree, and they go to the right child, say node v1, of the root. In order to compute
the number of occurrences of characters in the interval [6..11] that belong to Σ[1..4] and hence are smaller than l, we
compute

(a0,b0) = (
rank0

(
B[1..7],6 − 1

)
, rank0

(
B[1..7],11

)) = (2,3)

and the number we are searching for is b0 − a0 = 3 − 2 = 1, so we add it to a variable smaller, which was initialized to 0
at the beginning. Then we descend to the right child v1 and have to compute the boundaries of the search interval in the
bit vector B[5..7] that corresponds to the search interval [6..11] in the bit vector B[1..7] . These boundaries are a1 + 1 and b1,
where

(a1,b1) = (
rank1

(
B[1..7],6 − 1

)
, rank1

(
B[1..7],11

)) = (3,8).

Proceeding recursively, we find that l belongs to the third quarter Σ[5..6] of Σ , so the occurrences of l correspond to
zeros in the bit vector at v1, and they go to the left child, say node v2, of v1. Again, we compute

(
a′

0,b′
0

) = (
rank0

(
B[5..7],4 − 1

)
, rank0

(
B[5..7],8

)) = (2,7),(
a′

1,b′
1

) = (
rank1

(
B[5..7],4 − 1

)
, rank1

(
B[5..7],8

)) = (1,1).

The number of occurrences of characters in the string BWT[3..8] that belong to Σ[7] = p is b′
1 − a′

1 = 1 − 1 = 0 and the new
search interval in the bit vector B[5..6] is [a′

0 + 1..b′
0] = [3..7]. In the third step, we compute

(
a′′

0,b′′
0

) = (
rank0

(
B[5..6],3 − 1

)
, rank0

(
B[5..6],7

)) = (1,4),(
a′′

1,b′′
1

) = (
rank1

(
B[5..6],3 − 1

)
, rank1

(
B[5..6],7

)) = (1,3)

and find that there are b′′
1 − a′′

1 = 2 occurrences of the character n and b′′
0 − a′′

0 = 3 occurrences of the character l. In the
last step the search interval in the bit vector B[5..5] is [a′′

0 + 1..b′′
0] = [2..4]. We have reached a leaf of the wavelet tree, and

BWT[5..5] = llll. So obviously, a′′
0 + 1 = 2 is exactly the value of O cc(l,5) + 1, and b′′

0 = 4 is the value of O cc(l,11). The
variable smaller = 1 contains the sum of all found occurrences of characters in BWT[6..11] which are smaller than l. Pseudo-
code for the computation of the triple (i′, j′, smaller) = traversal([i.. j], c) where i′ = O cc(c, i − 1)+ 1 and j′ = O cc(c, j) can
be found in Algorithm 3.

The method of Lam et al. [7] is based on the same idea, but they use different data structures. They store the Burrows–
Wheeler transformed string BWT, which requires n logσ bits, and a “rank and select data structure [22], which requires only
o(n) bits” (there are no details in [7]). We store the wavelet tree of BWT (but not the string BWT itself), which also requires
n logσ bits, and the supporting rank data structures, which require o(n logσ) bits. It follows as a consequence that their

T. Schnattinger et al. / Information and Computation 213 (2012) 13–22 19
Algorithm 3 Given a BWT-interval [i.. j] and c ∈ Σ , traversal([i.. j], c) returns the triple (i′, j′, smaller), where [C[c] +
i′..C[c] + j′] is the new BWT-interval after a backward search step for c, and smaller is the number of occurrences of
characters in BWT[i.. j] that are strictly smaller than c.
function traversal([i.. j], c)

return traversal′([i.. j], c, [1..σ],0)

function traversal′([i.. j], c, [l..r], smaller)
if l = r then return (i, j, smaller)
else

(a0,b0) ← (rank0(B[l..r], i − 1), rank0(B[l..r], j))
(a1,b1) ← (i − 1 − a0, j − b0)

m = 	 l+r
2

if c � Σ[m] then
return traversal′([a0 + 1..b0], c, [l..m], smaller)

else
return traversal′([a1 + 1..b1], c, [m + 1..r], smaller + b0 − a0)

Table 1
Comparison of the running times (in seconds) of the searches for the six RNA structural patterns in the human DNA sequence (about 3 billion nucleotides).
The small numbers in parentheses are the numbers of matches found. Index 1© is our new bidirectional wavelet index. Index 2© consists of the suffix array
SA of S (supporting binary search in the forward direction), and the wavelet tree of the Burrows–Wheeler transformed string of S (supporting backward
search). Index 3© is similar to Index 2©, but SA is replaced with a compressed suffix array. Index 4© is similar to index 3©, but further enhanced by a
balanced parenthesis sequence supporting faster forward search [14].

Index 1© 2© 3© 4©
Size 2.2 GB 12.8 GB 3.0 GB 4.0 GB

hairpin1 (2343) 13569 ms 14834 ms 285923 ms 105267 ms
hairpin2 (286) 114 ms 71 ms 1420 ms 518 ms
hairpin4 (3098) 884 ms 612 ms 12231 ms 4500 ms
hloop(5) (14870) 34297 ms 36993 ms 721301 ms 264904 ms
acloop(5) (294) 1163 ms 1284 ms 24950 ms 9228 ms
acloop(10) (224) 524 ms 576 ms 12468 ms 4754 ms

bidirectional BWT data structure uses less space than our bidirectional wavelet index. However, with the wavelet tree the
number smaller can be computed in O (logσ) time (see above), so that one bidirectional search step takes O (logσ) time.
By contrast, the method of Lam et al. [7] takes O (σ) time for the same task. Let us recall the problem: given the ω-interval
in the backward index and the ωrev -interval in the forward index, the cω-interval is computed by backward search and the
task is to find the ωrev c-interval in the forward index. For each character d that is smaller than c, Lam et al. determine the
size of the dω-interval by backward search, and the number smaller is the sum of the sizes of these intervals. Because the
calculation of the number smaller takes O (σ) time, so does one search step with the bidirectional BWT.

4. Experimental results

An implementation of the bidirectional wavelet index is available at our website http://www.uni-ulm.de/in/
theo/research/seqana under the GNU General Public License. To assess the performance of our new data structure,
we used it to search for RNA secondary structures in large DNA sequences. We adopted the depth-first search method
described in [4]; for space reasons, it is not repeated here. The following RNA secondary structures are also taken from [4]:

1. hairpin1 = (stem:=N{20,50}) (loop:=NNN)^stem
2. hairpin2 = (stem:=N{10,50}) (loop:=GGAC)^stem
3. hairpin4 = (stem:=N{10,15}) (loop:=GGAC[1])^stem
4. hloop(length) = (stem:=N{15,20}) (loop:=N{length})^stem
5. acloop(length) = (stem:=N{15,20}) (loop:=(A|C){length})^stem

The symbol N is used as a wildcard matching any nucleotide. The first pattern describes a hairpin structure with an
apical loop consisting of three nucleotides. On the left- and right-hand sides of the loop are two reverse complementary
sequences, each consisting of 20–50 nucleotides. The second pattern describes a similar structure, where the loop must be
the sequence GGAC. The [1] in the third pattern means that one nucleotide can be inserted at any position, i.e., the loop is
one of the sequences GGAC, NGGAC, GNGAC, GGNAC, GGANC or GGACN. In the last two patterns length denotes the length
of the loop sequence. For example, in the pattern acloop(5) the loop consists of five nucleotides, each of which must
either be A or C. In the experiments reported in Table 1, we searched for six patterns in the complete human genome,1

1 http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz.

http://www.uni-ulm.de/in/theo/research/seqana
http://www.uni-ulm.de/in/theo/research/seqana

20 T. Schnattinger et al. / Information and Computation 213 (2012) 13–22
which consists of about 3 billion nucleotides. All experiments were conducted on a PC with a Dual-Core AMD Opteron 8218
processor (2,6 GHz) and 32 GB main memory. Unfortunately, the implementations of affix trees/arrays [3,4] are currently not
available. For this reason, one cannot compare the running times. (We conjecture, however, that our method outperforms
the affix array method.) Nevertheless, we can say something about the space consumption. According to Strothmann [4], an
affix array requires 18 bytes per nucleotide, so approximately 50 GB for the human DNA sequence. The bidirectional wavelet
index (index 1©) takes only about 2.2 GB; see Table 1. Hence it decreases the space requirement by a factor of 23.

Due to the lack of affix tree/array implementations, we compared our method with the following three approaches to
support bidirectional search. First, we combined the two well-known data structures supporting forward search (the suffix
array SA of string S) and backward search (the wavelet tree of the Burrows–Wheeler transformed string BWT of S), and
obtained an index (index 2©) which also supports bidirectional search. Because both data structures deliver intervals of
the suffix array, the two searches can directly be combined without synchronization. Interestingly enough, in the technical
literature this natural approach has not been considered yet, i.e., it is new as well. Table 1 shows that index 2© takes 12.8
GB for the human DNA sequence. Second, to reduce the space consumption even more, we replaced the suffix array in index
2© by a compressed suffix array (CSA) which also supports binary search in the forward direction, yielding index 3©. This

reduces the memory consumption by another factor of 4, but slows down the running time by a factor of 20 (compared
with index 2©); see Table 1. This is because the CSA must frequently recover SA-values from its sampled SA-values (in our
implementation every twelveth value is stored; more samples would decrease the running time, but increase the memory
requirements). By enhancing this compressed suffix array with a balanced parenthesis sequence [14], faster forward search
is possible, and we obtain index 4©, which is about 2.7 times faster than index 3©. By contrast, the time-space trade-off of
our bidirectional wavelet index 1© is much better: it reduces the space consumption by a factor of 5.8, while being about
as fast as index 2©.

We were not able to compare our implementation with the implementation of Lam et al. [7]. While our code is modular
and for readability adheres closely to the presented algorithms, the code of the bidirectional BWT is integrated into a
software tool for short read alignment. Its code is highly optimized for speed and some parts crucially depend on the DNA
alphabet. This explains the reduced readability and modularity, and our inability to modify the code for an experimental
comparison.

5. Bidirectional matching statistics

As already mentioned, matching statistics have been used, among other things, in approximate string matching [9], the
computation of string kernels [10] and the design of DNA chips [11]. Let us recall the formal definition.

Definition 1. Let S1 and S2 be two strings of length n1 = |S1| and n2 = |S2|. The matching statistics of S2 w.r.t. S1 is an array
ms[1..n2] such that for each entry ms[i] = � the string S2[i..i + � − 1] is the longest prefix of S2[i..n2] that is a substring
of S1.

Matching statistics can be computed in linear time by matching S2 in forward direction against the suffix tree or the
enhanced suffix array of S1 [9,23]. Very recently, it was shown that they can also be computed in linear time by matching S2

in backwards direction against a compressed full-text index (which consists e.g. of the backward index of S1—as explained
at the beginning of Section 3—and a compressed suffix tree that allows one to determine parent nodes in constant time);
see [8].

In the context of bidirectional search, it is quite natural to raise the following problem. For any position i in S2, find the
length of the longest substring of S2 containing position i that matches a substring somewhere in S1. In other words, what
is the maximal bidirectional extension S2[s..e] of S2[i], where s � i � e, such that S2[s..e] matches a substring somewhere
in S1 (provided, of course, that character S2[i] occurs in S1 at all)?

Definition 2. The bidirectional matching statistics of S2 w.r.t. S1 is an array bms[1..n2] such that for each entry bms[i] = (�, s)
the string S2[s..s + � − 1] is a longest substring of S2 containing position i (i.e., s � i � s + � − 1) that matches a substring
somewhere in S1.

Algorithm 4 contains pseudo-code that computes bidirectional matching statistics from matching statistics.
Before we analyze Algorithm 4, we illustrate it with an example. Let S1 = gcgtcgc and S2 = atcgcg. The matching

statistics of S2 w.r.t. S1 is ms[1..6] = [0,4,3,3,2,1]. In Table 2, one can see the values of i, ms[i], list and bms[i] at the end
of each iteration of the for-loop in Algorithm 4. The result is bms[1..6] = [(0,0), (4,2), (4,2), (4,2), (4,2), (3,4)].

The computation of the matchings statistics ms[1..n2] of string S2 w.r.t. string S1 takes O (n1 + n2) time [9,23,8]. Given
ms[1..n2], Algorithm 4 computes the bidirectional matching statistics bms[1..n2] in O (n2) steps. This is because in each of
the n2 iterations of its for-loop at most one element is added to the list (line 8), and thus the while-loop also makes at most
n2 iterations. Because all other statements take constant time, this results in an amortized runtime of O (n2). Therefore, the
overall time complexity of computing the bidirectional matching statistics is O (n1 + n2).

To prove the correctness of Algorithm 4, we show that it maintains the three invariants of the following lemma.

T. Schnattinger et al. / Information and Computation 213 (2012) 13–22 21
Algorithm 4 Given the matching statistics ms[1..n2] of S2 w.r.t. S1, this algorithm computes the bidirectional matching
statistics. During a left-to-right scan over the array ms[1..n2], it maintains longest matches in a linked list having elements
of the form (length, start).

function bidirectionalMatching Statistics(ms[1..n2])
1 list ← []
2 for i = 1 to n2 do

3 if list.size > 0 and list.get F irst.start + list.get F irst.length � i then
4 list.removeF irst

5 if ms[i] > 0 and (i = 1 or ms[i] �= ms[i − 1] − 1) then
6 while (list.size > 0 and ms[i] � list.getLast.length)

7 list.removeLast
8 list.addLast((ms[i], i))

9 if list.size = 0 then
10 bms[i] ← (0,0)

11 else
12 bms[i] ← list.get F irst

13 return bms

Table 2
The values of i, ms[i], list and bms[i] at the end of each iteration of the for-loop.

i ms[i] list bms[i]
1 0 [] (0,0)

2 4 [(4,2)] (4,2)

3 3 [(4,2)] (4,2)

4 3 [(4,2), (3,4)] (4,2)

5 2 [(4,2), (3,4)] (4,2)

6 1 [(3,4)] (3,4)

Lemma 1. If the list before the i-th iteration of the for-loop has the form [(ms[i1], i1), (ms[i2], i2), . . . , (ms[im], im)] (where m � 0
and i1 < i2 < · · · im), then the following three properties hold true.

1. The sequence ms[i1], . . . ,ms[im] is strictly descending.
2. The sequence i1 + ms[i1], . . . , im + ms[im] is strictly ascending.
3. If the list is non-empty (i.e., m > 0), then bms[i − 1] = (ms[i1], i1). Otherwise i = 1 or bms[i − 1] = (0,0).

Proof. The initial list is empty, so the three properties hold before the first iteration of the for-loop. Suppose that the
properties are true before the i-th iteration of the for-loop. We show that they also hold after that iteration (i.e., before the
(i + 1)-th iteration).

1. Before (ms[i], i) is inserted at the end of the list, all elements with first component length � ms[i] are removed from
the end of the list. Hence the first property also holds after the i-th iteration of the for-loop (of course, a possible
deletion of the first element does not harm).

2. Consider the sequence a j = j +ms[j], where 1 � j � n2. We claim that it is ascending. For a proof by contradiction sup-
pose that a j = j +ms[j] < j −1+ms[j −1] = a j−1 for some j > 1. Clearly, this is equivalent to ms[j] < ms[j −1]−1. This
inequality, however, contradicts the definition of the matching statistics. Therefore, the sequence a1, . . .an2 is ascending.
By assumption, the sequence i1 + ms[i1], . . . , im + ms[im] before the i-th iteration of the for-loop is strictly ascend-
ing. Even if the first element of the list and/or elements at the end of the list are removed, the resulting list
[(ms[j1], j1), (ms[j2], j2), . . . , (ms[jk], jk)] still has the second property. Clearly, (ms[i], i) is inserted at the end of the
resulting list if and only if ms[i] > ms[i − 1] − 1, or equivalently, i + ms[i] > i − 1 + ms[i − 1]. If it is not inserted,
then the second property holds as discussed above. If it is inserted, then the new list after the i-th iteration has the
form [(ms[j1], j1), (ms[j2], j2), . . . , (ms[jk], jk), (ms[i], i)]. Because the sequence a1, . . .an2 is ascending, we conclude
that jk + ms[jk] � i − 1 + ms[i − 1]. In conjunction with i − 1 + ms[i − 1] < i + ms[i], this implies that the list after the
i-th iteration has the second property.

3. Suppose first that the list before the i-th iteration is empty. Then we have bms[i − 1] = (0,0), that is, the character
S2[i − 1] does not occur in S1. If ms[i] > 0, then the list after the i-th iteration contains only the element (ms[i], i) and
clearly bms[i] = (ms[i], i). Otherwise ms[i] = 0, so the list after the i-th iteration is also empty and bms[i] = (0,0). In
both cases, the third property holds.
Now suppose that the list before the i-th iteration is not empty, i.e., list = [(ms[i1], i1), (ms[i2], i2), . . . , (ms[im], im)],
where m > 0. By assumption bms[i − 1] is the first element (ms[i1], i1) of the list. If this element is not deleted from the
list (lines 3–4), then S2[i1..i1 + ms[i1] − 1] still contains position i and it follows from the properties that

22 T. Schnattinger et al. / Information and Computation 213 (2012) 13–22
bms[i] =
{

(ms[i], i) if ms[i] �ms[i1],
(ms[i1], i1) otherwise.

(1)

If the first element is deleted from the list (lines 3–4), then this is because S2[i1..i1 + ms[i1] − 1] does not contain
position i (i1 + ms[i1] − 1 < i). On the other hand, since S2[i1..i1 + ms[i1] − 1] contains position i − 1 (i1 + ms[i1] − 1 �
i − 1), it follows that i1 + ms[i1] − 1 = i − 1. Let us assume that the original list has a second element (ms[i2], i2)

(the other case follows by a similar reasoning as above). Then property (2) implies i2 + ms[i2] − 1 > i − 1, that is,
S2[i2..i2 + ms[i2] − 1] contains position i (consequently, ms[i] > 0). Again, it follows from the properties that

bms[i] =
{

(ms[i], i) if ms[i] �ms[i2],
(ms[i2], i2) otherwise.

(2)

Now there are two possibilities: Either ms[i]� ms[i1] or ms[i] < ms[i1] in Eq. (1) (either ms[i]� ms[i2] or ms[i] < ms[i2]
in Eq. 2, respectively). In the first case, all elements of the list are removed (in lines 6–7) and then (ms[i], i) is inserted
into the now empty list. Hence bms[i] = (ms[i], i) is the first element of the new list. In the second case, some elements
are removed from the end of the list, but not the first one. Thus bms[i] = (ms[i1], i1) (bms[i] = (ms[i2], i2), respectively)
is the first element of the new list. �

References

[1] R.C. Lee, R.L. Feinbaum, V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell 75
(1993) 843–854.

[2] V. Kim, J. Nam, Genomics of microRNA, Trends Genet. 22 (2006) 165–173.
[3] G. Mauri, G. Pavesi, Pattern discovery in RNA secondary structure using affix trees, in: CPM’03: Proceedings of the 14th Annual Conference on Combi-

natorial Pattern Matching, Springer-Verlag, 2003, pp. 278–294.
[4] D. Strothmann, The affix array data structure and its applications to RNA secondary structure analysis, Theor. Comput. Sci. 389 (2007) 278–294.
[5] J. Stoye, Affix trees, Technical Report 04, University of Bielefeld, 2000.
[6] M.G. Maaß, Linear bidirectional on-line construction of affix trees, Algorithmica 37 (2003) 43–74.
[7] T.W. Lam, R. Li, A. Tam, S. Wong, E. Wu, S.M. Yiu, High throughput short read alignment via bi-directional BWT, in: BIBM’09: Proceedings of the 2009

IEEE International Conference on Bioinformatics and Biomedicine, IEEE Computer Society, Washington, DC, USA, 2009, pp. 31–36.
[8] E. Ohlebusch, S. Gog, A. Kügel, Computing matching statistics and maximal exact matches on compressed full-text indexes, in: SPIRE’10: Proceedings

of the 17th International Symposium on String Processing and Information Retrieval, in: LNCS, vol. 6393, Springer-Verlag, 2010, pp. 347–358.
[9] W. Chang, E. Lawler, Sublinear approximate string matching and biological applications, Algorithmica 12 (1994) 327–344.

[10] C.H. Teo, S.V.N. Vishwanathan, Fast and space efficient string kernels using suffix arrays, in: ICML’06: Proceedings of the 23rd International Conference
on Machine Learning, ACM, New York, NY, USA, 2006, pp. 929–936.

[11] S. Rahmann, Fast and sensitive probe selection for DNA chips using jumps in matching statistics, in: CSB’03: Proceedings of the IEEE Computer Society
Conference on Bioinformatics, IEEE Computer Society, Washington, DC, USA, 2003, pp. 57–64.

[12] U. Manber, G. Myers, Suffix arrays: a new method for on-line string searches, SIAM J. Comput. 22 (1993) 935–948.
[13] S.J. Puglisi, W.F. Smyth, A.H. Turpin, A taxonomy of suffix array construction algorithms, ACM Comput. Surv. 39 (2007) 1–31.
[14] E. Ohlebusch, S. Gog, A compressed enhanced suffix array supporting fast string matching, in: SPIRE’09: Proceedings of the 16th International Sympo-

sium on String Processing and Information Retrieval, in: LNCS, vol. 5721, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 51–62.
[15] M. Burrows, D.J. Wheeler, A block-sorting lossless data compression algorithm, Research Report 124, Digital Systems Research Center, 1994.
[16] J. Seward, bzip2 v1.0.5, http://www.bzip.org/, 2007.
[17] D. Adjeroh, T. Bell, A. Mukherjee, The Burrows–Wheeler Transform: Data Compression, Suffix Arrays, and Pattern Matching, Springer-Verlag, 2008.
[18] P. Ferragina, G. Manzini, Opportunistic data structures with applications, in: FOCS’00: Proceedings of the 41st Annual Symposium on Foundations of

Computer Science, IEEE Computer Society, Washington, DC, USA, 2000, pp. 390–398.
[19] G. Navarro, V. Mäkinen, Compressed full-text indexes, ACM Comput. Surv. 39 (2007), Article 2.
[20] R. Grossi, A. Gupta, J.S. Vitter, High-order entropy-compressed text indexes, in: SODA’03: Proceedings of the 14th Annual ACM-SIAM Symposium on

Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003, pp. 841–850.
[21] G. Jacobson, Space-efficient static trees and graphs, in: FOCS’89: Proceedings of the 30th Annual Symposium on Foundations of Computer Science, IEEE

Computer Society, Washington, DC, USA, 1989, pp. 549–554.
[22] V. Mäkinen, G. Navarro, Rank and select revisited and extended, Theor. Comput. Sci. 387 (2007) 332–347.
[23] M.I. Abouelhoda, S. Kurtz, E. Ohlebusch, Replacing suffix trees with enhanced suffix arrays, J. Discrete Algorithms 2 (2004) 53–86.

http://www.bzip.org/

	Bidirectional search in a string with wavelet trees and bidirectional matching statistics
	1 Introduction
	2 Preliminaries
	2.1 Burrows and Wheeler transform
	2.2 Backward search
	2.3 Wavelet tree

	3 Bidirectional search
	4 Experimental results
	5 Bidirectional matching statistics
	References

