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Abstract. Algorithms for local sequence similarity search have been
extensively studied. However, advances in computer hardware and the
astounding throughput of next generation DNA sequencers continues
to demand improved computational methods. Theory and experience
has demonstrated the utility of a search strategy in which discontiguous
seeds (i.e. short, exact matches, skipping certain fixed positions when
comparing) are first identified and only those sequence regions are further
explored. In theory, variable length seeds are desirable when repetitive
elements are present, but fixed length seeds are easier to manage. Thus
current popular programs use fixed length seeds, and typically ignore
repetitive elements with “repeat masking”. Fortunately, recent increases
in memory size and advances in suffix array related algorithms have
made variable length seeds technically feasible. The one element which
has been missing is a simple technique to enable the use of discontiguous
variable length seeds.

We describe a transformation, DisLex, for use with discontiguous suffix
arrays. Discontiguous suffix arrays hold the suffices of a text in a sorted
order which skips predetermined don’t care positions in a repeated pat-
tern, corresponding to a variable length discontiguous seed. DisLex uses
the technique of lexical naming to construct a derived lexTezt, which
mirrors the original text. The mapping is done in such a way that the
ordinary suffix array constructed on lexText is the same as the discon-
tiguous suffix array constructed on the original text.

Using whole human chromosomes, we show that discontiguous suffix ar-
rays can be practically constructed with existing standard suffix array
construction programs and that the overhead incurred by DisLex itself
is negligible — less than 30 seconds for the biggest human chromosomes.
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1 Background

Nearly 20 years ago, the development of BLAST[3] revolutionized genomic se-
quence similarity search and rapidly became an ubiquitous tool. A decade later,
PatternHunter[11] formally introduced “spaced seeds”, which improve on the
original BLAST technique of hashing fixed length substrings by hashing discon-
tiguous subsequences based on a given pattern of don’t care positions.

Spaced seeds have both practical and theoretical advantages for detecting
sequence similarities. The practical advantage is that protein-coding DNA tends
to exhibit substitutions at every third position, since such substitutions often
preserve the encoded amino acids (fig. 1). The theoretical advantage is that,
even with uniform random substitutions, spaced seeds are more likely to find at
least one hit. This fact is related to the statistics of word counts[5]. For example,
the expected count in a random sequence of the words “gggg” and “gagc” is the
same, but the variance of “gggg” is larger (because it may occur in overlapping
clumps), and the probability of getting “gggg” zero times is larger. The benefits
of spaced seeds have been demonstrated in practical alignment tools other than
PatternHunter as well[9].

These invaluable tools enable a variety of useful searches against genomic
data. However the need for new sequence comparison methods for huge datasets
is, perhaps surprisingly, as great as ever. This is because DNA sequencing tech-
nology continues to advance beyond what existing analysis tools can easily han-
dle. Recent sequencing technologies such as 454, Solexa-Illumina, and SOLiD
have enabled new approaches to probing chromatin structure, transcriptomes,
and genetic polymorphisms, by massive sequencing of DNA tags. Genomes and
metagenomes are being sequenced at an ever increasing rate. The fact is, it is
not easy to compare such datasets using BLAST or any other existing tool.

The recent explosion in the availability of genomic sequence data, coupled
with nearly exponential growth in the size of computer memory; has created
both the need and the opportunity for new algorithms and data structures to
support approximate matching of genomic sequences. Suffix trees are powerful
data structures for string search with many applications in computational bi-
ology|[7]. Suffix arrays[12] are more compact data structures which can replace
suffix trees in most applications.

Suffix arrays are a promising basis for improved sequence comparison meth-
ods. Although in pure form simply an array of (the starting indices of) the text
suffices in sorted order; with the aid of some auxiliary data, the suffix array is a
data structure that allows many types of sequence queries to be answered in a
theoretically efficient manner[7,1]. Several studies have applied standard suffix
arrays to genomic data[14, 2, 15].

The efficient variable length exact matching afforded by suffix arrays is es-
pecially promising in handling repetitive elements. Repetitive elements pose a
problem for fixed length seeds, because long matches to repetitive sequences
occur frequently and either overwhelm the computation or obscure meaningful
shorter matches (if the seed length is increased to reduce the number of hits).



A common approach to repetitive regions has been to simply ignore them by
so called “repeat masking”. Unfortunately this approach may sacrifice crucial
information. Repetitive sequences comprise a large fraction of the genomes of
higher species (more than 50% for human) and in recent years have been found
to be transcribed in many cases. Indeed, in at least one case, transcripts of
repetitive sequences have been implicated in important regulatory roles[6].

Standard suffix arrays can only find contiguous matches, limiting their sen-
sitivity for remote similarity detection. Discontiguous suffix arrays would be
expected to have improved sensitivity, just as has been demonstrated for spaced
seeds.

This paper presents DisLex, a transformation which allows existing suffix
array algorithms and software to be used to construct discontiguous suffix arrays.

2 Methods

2.1 Outline of DisLex

DisLex consists of two linear time (in the size of the text) transformations
wrapped around a standard suffix array construction step. Since suffix arrays
can be constructed in linear time[10, 8], DisLex can be used to construct a dis-
contiguous suffix array in linear time. The dislex procedure is outlined in table 1.

1. transformation of the text to a LexText*

construction of a standard suffix array on the LexText

3. reverse transformation of the indices of the suffix array constructed in the previous
step, so that the indices refer to positions in the original text™*

N

Table 1. The steps for constructing a discontiguous suffix array with DisLex are shown.
The steps marked with an asterisk are unique to DisLex.

2.2 The Skew Algorithm

The key idea of DisLex comes from a technique involving lexical naming and
suffix grouping by index modulus used in the skew algorithm[8] for construction
of ordinary suffix arrays. We begin by explaining the parts of the skew algorithm
which are relevant to DisLex.

2.3 The Skew Algorithm:
Sorting Suffices While Skipping Every Third

The skew algorithm[8] is a linear time algorithm for ordinary suffix array con-
struction. The technique of lexical naming used by the skew algorithm forms the



basis of DisLex. In the skew algorithm, lexical naming allows the suffices with
index i, such that ¢ mod 3 # 0, to be sorted using an ordinary suffix array
construction procedure (i.e. a suffix array construction procedure which does
not skip every third suffix). Note that this cannot be done by simply sorting the
suffices of the text with every third character deleted.

2.4 Lexical Naming in the Skew Algorithm

The lexical naming used in a subroutine of the skew algorithm, defines a one-to-
one mapping between each distinct length three substring (¢riple) and integers
such that the lexical order of the integers is consistent with that of the triples
they represent. Adopting their terminology, the lexical name of a triple is the
integer it corresponds to in the mapping. The particular mapping used is the rank
(counting from one) of each triple, when sorted in alphabetical order. Finally,
they pad each string with three special terminal characters which map to the
integer zero.

2.5 Suffix Grouping by Modulus in the Skew Algorithm

As an intermediate step, the skew algorithm computes an array which we call
the lexText; an array of lexical names which consists of the concatenation of two
similar blocks, both of which mirror the original text. The first block represents
the suffices with indices 4, such that ¢ mod 3 = 1, (hereafter denoted as 1,543
suffices while the second block represents the 2,,,43 suffices. An example text
and its corresponding lexText are shown in figure 2. For suffices in the second
block, the corresponding triples spell out the 2,,,43 suffices of the original text,
while for suffices in the first block, the triples spell out the 1,,,43 suffices followed
by terminal padding and then the original text minus the first two characters.
Fortunately the terminal padding insulates the effect of the extra characters
when sorting. It can easily be confirmed that the sorted order of the 1,,,43
and 2,,,43 suffices of the original text is equivalent to the sorted order of their
corresponding positions in the lexText.

2.6 The DisLex transformation

Notation Some notation used in this manuscript is shown in table 2.

The lexText computed by the skew algorithm skips the 0,,,43 suffices, which
is the whole point of its use — to recursively reduce the size of the “text” by a
factor of two thirds until a base case is reached.

Nevertheless, we observe that by prepending a third block, representing the
0,043 suffices to the lexText computed by the skew algorithm, the lexText could
be used to indirectly sort all of the original text.

For ordinary suffix array construction this indirection is meaningless, but
it does allow some flexibility in the way suffices are sorted. In particular, by
computing lexical names with respect to a don’t care pattern mask, the lexText
can be used to transform the discontiguous suffix array construction problem to
ordinary suffix array construction. An example is shown in figure 3.



0 atgtgctgcagtctctacacgtacgaggggacaccggtgaatgacgggaaccagetggag
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Fig.1. An alignment of the human and fugu DCDC2 genes is shown. The longest
exact match (length 8) and match under the codon mask “101” (length 23, including
15 matching nucleotides) are indicated with asterisks.

notation quantity numerical relation
Im mask
ls text
ly text plus mask ls +1lm
lp terminal padding 2%lm — (ly % lm) — 1
l. text with terminal padding 1[5 + [,
le lexText -1l +1
I lexText modulo block lo [ lm

Table 2. Notation for the length of various strings or text regions is shown. “% I,,,”
denotes the remainder after dividing by I,

Terminal Padding A sufficient number of terminal padding characters needs
to be appended to the text to ensure that each modulo block is insulated from
the following blocks by at least one terminal character. To ease the reverse
tranformation described in the following section, it is convenient to append extra
terminal characters as necessary so that each modulo block has the same length.
The exact formula for the number of terminal characters is given in third column
of table 2.

2.7 Reverse Transformation

The conventional suffix array of the lexText contains the desired information
regarding the order of the text suffices sorted as discontiguous subsequences
with the given mask. The remaining step is to reverse transform the indices of
the lexText suffix array to indices into the original text. This can be computed



text with padding: wallawalla$$$

suffix index
2) triple lexName 1) wallawallas$ss O
zzz 2 allawalla$$s 1
all 5 llawallas$ss 2
awa 3 lawallas$s$s 3
las 4 awallas$ss 4
1?;‘7 2 walla$s$s b
wal 7 allasss 6
llas$ss 7
la$s$s 8
3) 1 . suffix triple lexName asss 9
allawallas$$s all 2 $s$s 10

awalla$ss awa 3

lla$s$$ 1lla 6

$$S $SS 0

2 suffix triple lexName

llawalla$ss 1lla 6

wallasss wal 7

lasss 1la$ 4

4) LeText: 2 3 6 0.6 7 4
triples:  all awa lla $$$illa wal la$
1_ ., suffices 2, suffices

Fig. 2. The definition of the lexText used by the skew algorithm is illustrated with the
text “wallawalla”. 1) lists the suffices and their indices, 2) lists the lexical names of each
triple, 3) lists the lexical names of the suffices equal (mod 3) to 1 and 2 respectively, 4)
depicts how the lexText mirrors the original text. “LexName” denotes “lexical name”.



text + padding: atggacgacac $.8.5,, mask: 101

2) triple lex 1) suffix triple index
$1'$3 0 a.gg.cg.ca.slsz. a.g 0
a.$ 1

1 t.ga.ga.ac. $.$, t.g 1
a.a 2
a.g 3 g.ac.ac.c$ . $  g.a 2
c.3, 4 g.cg.ca.s$.$ . g.c 3
c.a 5
c.c 6 a.ga.ac. $.$. a.g 4
g.a 7 c.ac.c$ . §, c.a 5
g.c 8
t.g 9 g.ca.$l$2. g.c 6
a.ac. $.§. a.a 7
. . . . . 8
0. suffix triple lex c.c5,. 8, c.c
3 a.$$,.c a.s$; 9

a.gg.cg.ca.$1$2. a.g

g.cg.ca.$$.. g.c 8 c.$8$  c.5, 10
o Tl \n e
1 2 1
1 suffix 2 suffix triple lex
t.ga.ga.ac.$2$3 t.g 9 g.ac.ac.c$l.$3 g.a 17
a.ga.ac.$2$3 3 c.ac.c$1.$3 c.a 5
a.ac.$.$, a.a 2 c.c$ .§, c.c 6
c.$2$3 c.$2 4 $1.$3 $1.$3 0
lexText 3 8 8 1 9 3 2 4 7 5 6 0
triples a.g g.c g.c a.$ i t.ga.ga.a c.$,i g.a c.a c.c §..$,
text atg gac gac ac atgg acg aca c atgga cga cac
4) 0.5 Suffices 1. suffices 2 . Suffices

Fig. 3. The transformation computed by DisLex for the text “atggacgacac” under
mask “101” is shown. Parts: 1) lists the suffices, their triples and indices, 2) lists the
lexical names of each triple, 3) lists the lexical names of the suffices equal (mod 3)
to 0, 1 and 2 respectively, 4) depicts how the lexText mirrors the original text. “Lex”
denotes “lexical name”. The terminal characters $1, $2, . .. have increasing lexical order,
but less than that of any non-terminal characters.



as follows:

Z‘s :bnum + lm * (Zx - lb * bnum)»
bnum == Lzm/lbj

2.8 Lexical Naming Method and Computational Complexity

Lexical names of substrings of fixed length [,,, can be computed based on sorted
rank or arithmetically.

Rank Lexical Naming The skew algorithm assigns lexical names to substrings
appearing in the text, based on the rank of their sorted order amongst the distinct
length [,,, substrings appearing in the text. This can be done with [,, passes of
a single character radix sort in O(ls * l,;,) time and O(l;) space. The textbook
version of radix sort requires two working copies of the array (LexText in our
case) to be sorted. Fortunately “in place” versions of radix sort which do not
require extra memory are also possible[13].

Arithmetic Lexical Naming For small alphabets and relatively short masks,
each possible length [,,, substring can be mapped to a lexical name arithmetically,
by treating the substring as a non-negative integer represented in base o. Let
b; represent the ith character (skipping don’t care positions) of a substring b =
b1bs...by, . One may define the arithmetic lexical name of b as:

blo,lmfl+b2o.lm*2+.”+blm

When the lexical names fit in a single computer word (e.g. 32 bits), this is a
convenient method. For contiguous substrings, given the lexical name of one
substring, the succeeding substring can be computed in constant time by sub-
tracting the first term, multiplying by o, and then adding in one new term.
Unfortunately this technique does not apply to discontiguous substrings and the
time complexity is the same as for rank lexical naming (O(ls * l,,), although
the constant factor may somewhat faster). No extra memory is required. One
potential disadvantage of this approach is that the alphabet size of the resulting
LexText is larger than necessary, which may adversely affect the performance of
some suffix array construction algorithms.

3 Results and Conclusions

3.1 Implementation

We (P.H.) implemented DisLex in C++ for arithmetic lexical naming up to a
32 bit lexical name and also a custom function for the important special case
of the codon mask. To test the implementation we also implemented two other
(non-linear time) algorithms coded by different programmers. One (coded by



S.K.) uses the C++ standard library sort routine, and another “LAST” (coded
by M.F.) uses a version of radix sort. The source code for LAST is available at
last.cbrc. jp. The source code for DisLex will be made available upon request
under an open source license.

3.2 Running time

We measured the execution time of DisLex with the codon mask 101 and the
“PatternHunter” mask 111010010100110111, proposed for use with Pattern-
Hunter[11]. The running time of DisLex and a slightly modified version of the
skew algorithm program “drittel”[8] for constructing the suffix array of the lex-
Text are shown in table 3. As expected the customized routine for the codon
mask is faster than the general routine used for the PatternHunter mask. In fact,
for the codon mask, the reverse transformation takes slightly longer than DisLex
because it involves computing the modulus, which is a relatively slow operation.

chromosome #  DisLex transformation lexText suffix reverse transformation
array construction
Codon Mask: 101
Human 1 0,0 580, 579 3,4
Human 2 0,1 617, 613 4,3
Human 3 0,0 486, 485 3,3
Pattern Hunter Mask: 111010010100110111
Human 1 21,21 902, 899 4,3
Human 2 21, 21 951, 952 4,4
Human 3 17,17 758, 756 3,3

Table 3. Running time of two trials on an 2.66GGHz Intel Core2 Quad workstation with
8 GBytes of memory. Time in seconds reported by system library “time” function, “0”
means less than one second.

3.3 Terminal Padding

Regarding terminal padding, in figure 3 we have depicted each terminal padding
character as a distinct character $1, $2, . ... Since the performance of some suffix
array processing algorithms is sensitive to alphabet size, we note here that the
distinct terminal padding characters are mostly an expositional device. Multiple
terminal characters (or some other special convention) are necessary to give the
suffices an easily understood unique order (namely the suffix with the small-
est text index comes first). Consider the text “aa$$$” under the codon mask
“1017; two suffices both spell out the suffix “a.$”. Introducing multiple termi-
nal characters breaks this tie. However, for most applications it is not necessary



to resolve the relative order of such suffices, and therefore our implementation
of DisLex does not distinguish between different terminal characters.

Conclusion We have presented the first linear time algorithm to construct
discontiguous suffix arrays. As demonstrated by the running times shown here,
DisLex can be implemented efficiently enough to require negligible running time,
compared to the time required to construct a conventional suffix array on the
text. Combining DisLex with the skew algorithm gives the entire process a linear
computation time in the length of the text, but any suffix construction program
can be used to sort the lexText suffices. Indeed the simplicity of DisLex suggests
it may be possible to combine it with advanced techniques such as compressed
suffix arrays[4].

DisLex represents an important step forward in the quest to fully utilize
genomic data.
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