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Abstract. In this paper we consider the linear time algorithm of Kasai
et al. [6] for the computation of the Longest Common Prefix (LCP) array
given the text and the suffix array. We show that this algorithm can be
implemented without any auxiliary array in addition to the ones required
for the input (the text and the suffix array) and the output (the LCP
array). Thus, for a text of length n, we reduce the space occupancy of
this algorithm from 13n bytes to 9n bytes.

We also consider the problem of computing the LCP array by “overwrit-
ing” the suffix array. For this problem we propose an algorithm whose
space occupancy can be bounded in terms of the empirical entropy of
the input text. Experiments show that for linguistic texts our algorithm
uses roughly 7n bytes. Our algorithm makes use of the Burrows-Wheeler
Transform even if it does not represent any data in compressed form.
To our knowledge this is the first application of the Burrows-Wheeler
Transform outside the domain of data compression.

The source code for the algorithms described in this paper has been in-
cluded in the lightweight suffiz sorting package [I3] which is freely avail-
able under the GNU GPL.

1 Introduction

The suffiz array [I1] is a simple and elegant data structure used for several fun-
damental string matching problems involving both linguistic texts and biological
data. The vitality of this data structure is proven by the large number of suffix
array construction algorithms developed in the last two years [TIBI7/8T4]. The
suffix array of a text t[1,n] is the lexicographically sorted list of all its suffixes.
The suffix array is often used together with the Longest Common Prefiz array,
LCP array from now on, which contains the length of the longest common prefix
between every pair of lexicographically consecutive suffixes. The LCP informa-
tion can be used to speed up suffix array algorithms and to simulate the more
powerful, but more resource consuming, suffix tree data structure [6,11}.

In [6] Kasai et al. describe a simple (13 lines of C code) and elegant linear
time algorithm for computing the LCP array given the text and the suffix array.
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This was an important result for several reasons. First, although many suffix
array construction algorithms can be modified to return the LCP array as well,
this is not true for every algorithm. Having decoupled the two problems allows
one to choose the suffix array construction algorithm which better suits his/her
needs without the constraint of considering only those algorithms which also
provide the LCP array. Moreover, in some applications one may need the LCP
array later than the suffix array: if one has to compute them simultaneously
some temporary storage must be used for the LCP array.

The only drawback of the algorithm of Kasai et al. is its large space occu-
pancy. Assuming a “real world” model in which each text symbol takes one byte
and each suffix array or LCP array entry takes 4 bytes, the algorithm of Kasai et
al. uses 13n bytes, where n is the length of the input text. Considering that the
output of the computation (text, suffix array, and LCP array) takes 9n bytes, we
have a 4n bytes overhead which is a serious issue since it is nowadays common
to work with files hundreds of megabytes long.

In this paper we present a modified version of the algorithm of Kasai et
al. which only uses 9n bytes of storage. Our algorithm, called Lcp9, runs in
linear time and has the same simplicity and elegance of the original algorithm.
Experiments with several files of different size and structure show that Lcp9 is
only 5%-10% slower than the algorithm of Kasai et al[]

In our “real world” model, a space occupancy of 9n bytes is optimal if we
assume that at the end of the computation we need the text, the suffix array, and
the LCP array. However, this is no longer true if one is interested only in the LCP
array, that is, if at the end of the computation we no longer need the suffix array.
In this case, the space initially used for storing the suffix array can be reused
during the computation and for the storage of the LCP array. In this scenario
we can aim to a space occupancy as low as 5n bytes. The problem of computing
the LCP array discarding the suffix array has applications in the fields of string
matching, data compression and text analysis. For example, using the algorithm
described in [0, Sect. 5] with a single pass over the LCP array we can simulate a
post order visit of the suffix tree of the text t. In some applications, for example
for the construction of the compression booster described in [3], such visit does
not need the information stored in the suffix array.

If we only need the LCP array, even the 9n bytes space occupancy of algo-
rithm Lcp9 becomes the space bottleneck of the whole computation since for the
construction of the suffix array there are “lightweight” algorithms [1J14] which
only use (5+ €)n bytes with € < 1. In this paper we address this issue proposing
a simple linear time algorithm, called Lcp6, which computes the LCP array by
“overwriting” the suffix array. The space used by Lcpb depends on the regu-
larity of the input text t[1,n] and can be bounded in terms of the k-th order
empirical entropy of t. If t is highly compressible the space occupancy of Lcp6
can be as small as 6n bytes. Vice versa, if t is a “random” string the space

! Recently, we found out that in [9] Makinen describes a space-economical version of
Kasai et al. algorithm which only uses 9.125n bytes. We will report on Méakinen’s
algorithm in the full paper.
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required by our algorithm can be as large as 10n bytes. Note however that in
the first step of Lcpb we can evaluate exactly how much space it will need: if
such space turns out to be larger than 9n bytes we can quit Lcpb and compute
the LCP array using Lcp9. Thus, combining Lcp6 and Lep9 we get an algorithm
with a space occupancy between 6n and 9n bytes. The experimental results show
that for linguistic texts, source code, and xml/html documents Lcpb always uses
less than 8n bytes and for the largest files it often uses less than 7n bytes. For
DNA sequences Lcpb uses between 8n and 9n bytes, and—not surprisingly—for
compressed files it uses close to 10n bytes.

We point out that our algorithms only have a “practical” interest: from the
theoretical point of view their working space of @(nlogn) bits is not optimal.
Indeed, the optimal space/time tradeoff can be obtained combining the results
in [4] and [I5] which allow one to build the suffix array and LCP array in linear
time using O(n) bits of auxiliary storage. Unfortunately the algorithms in [4[T5]
are quite complex and it is still unclear whether they will lead to competitive
practical algorithms.

2 Background and Notation

Let X denote a finite ordered alphabet. Without loss of generality, in the follow-
ing we assume that X' consists of the integers 1,2,...,|X]|. Let t[1,n] denote a
text over X. For ¢ = 1,...,n we write t[i,n] to denote the suffix of t of length
n —1i+ 1 that is t[i,n] = t[i]t[i + 1] - - - t[n].

The suffix array [I1] for t is the array SA[1, n] such that t[SA[1], n], t[SA[2], n],
..., t[SA[n],n] is the list of suffixes of t sorted in lexicographic order. To define
unambiguously the lexicographic order of the suffixes it is customary to logically
append at the end of t a special end-of-string symbol # which is smaller than any
symbol in X. For example, for t = baaba, SA = [5,2, 3,4, 1] since t[5,5] = a is
the suffix with the lowest lexicographic rank, followed by t[2, 5] = aaba, followed
by t[3,5] = aba and so on.

The rank array RANK[1,n] of t is the inverse of the suffix array. That is,
RANK[i] = j if and only if SA[j] = i. Note that RANK[¢] is the rank of the
suffix t[¢,n] in the lexicographic order of the suffixes. The LCP array Lcp[l,n)
of t is an array such that LcCP[i] contains the length of the longest common
prefix between the suffix t[SA[i], n] and its predecessor in the lexicographic order
(which is t[SA[i — 1],n]). Note that LcP[1] is undefined since t[SA[1],n] is the
lexicographically smallest suffix and therefore it has no predecessor.

Finally, we define the RANKNEXT map such that:

RANKNEXT(7) = RANK[SA[i] + 1], fori=1,...,n, i # RaNK[n]. (1)

RANKNEXT(4) is the rank of the suffix t[SA[i] + 1,n], that is, the rank of the
suffix obtained removing the first character from the suffix of rank 7. Note that
RANKNEXT(+) is not defined for i = RANK[n] because in this case t[SA[i] + 1, n]
is the empty string.
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F L
mississippi# # mississipp i
ississippi#m i #mississip p
ssissippi#mi i ppi#missis s
sissippi#mis i ssippi#mis s
issippi#miss i ssissippi# m
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sippi#missis p i#mississi p
ippi#mississ p pi#mississ i
ppi#mississi s ippi#missi s
pi#mississip s issippi#mi s
i#mississipp s sippi#miss i
#mississippi S sissippi#m i

Fig. 1. The Burrows-Wheeler Transform for t = mississippi. The output of the trans-
form is the last column of the sorted matrix M, i.e., bwt = ipssm#pissii.

2.1 The Burrows-Wheeler Transform

In 1994, Burrows and Wheeler [2] introduced a transform that turns out to be
very elegant in itself and extremely useful for data compression. Given a string
t, the transform consists of three basic steps (see Fig. [l): (1) append to the
end of t a special symbol # smaller than any other symbol in X; (2) form a
conceptual matrix M whose rows are the cyclic shifts of the string t#, sorted
in lexicographic order; (3) construct the transformed text bwt by taking the last
column of M. Notice that every column of M, hence also the transformed text
bwt, is a permutation of t#.

If the input string t has length n, the transformed string bwt has length n+1
because of the presence of the # symbol. In the following we assume that the
transformed string is stored in an array indexed from 0 to n. For example, in
Fig. M we have bwt[0] = i, bwt[5] = #, bwt[11] = i. Using this notation and
observing that the rows of the matrix M—up to symbol # on each row—are
precisely the suffixes of t in lexicographic order , the computation of bwt given t
and the suffix array can be easily accomplished with the code of Fig.[2 (procedure
Sa2Bwt). From bwt we can always recover t. The inverse transform is based on
the following remarkable property. Let F[0,n] and L[0, n] denote respectively the
first and last column of the matrix M (hence, L = bwt). Then, for any o € X
we have that the k-th occurrence of o in F' corresponds to the k-th occurrence
of o in L. For example, in Fig. [[]we have that the second i in F (that is, F[2])
corresponds to the second i in L (that is, L[7]) since they both are the eighth
symbol of mississippi. Similarly, the third s in F' (F[10]) corresponds to the
third s in L (L[8]) since they both are the sixth symbol of mississippi.

Assume now that the character F[j] corresponds to L[i]. This means that
row i of M consists of a (rightward) cyclic shift of row j. Because of the rela-
tionship between rows of M and suffixes of t this is equivalent to stating that
the i-th suffix in the lexicographic order is equal to the j-th suffix with the
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first symbol removed. In terms of the map RANKNEXT defined by (Il) we have
RANKNEXT(j) = 4. From this latter relationship it follows that from bwt we
can obtain the RANKNEXT map. Indeed, we only need to scan the array bwt
(which coincides with column L) finding, for ¢« = 1,...,n the character F[j]
corresponding to bwt[i] = L[i]. The resulting code is given in Fig. 2 (procedure
Bwt2RankNext). Note that column F is not represented explicitly (since it would
take O(n) space). Instead we use the array count[1, |X|]: at the beginning of the
i-th iteration count[k] contains the number of occurrences in t of the characters
1,2,..., k—1 plus the number of occurrences of character k in bwt[0] - - - bwt[i—1].
Given the RANKNEXT map and the array bwt, we can recover t as follows.
The position of the end-of-string symbol # in bwt gives us RANK(1), that is, the
position of t[1,n] in the suffix array. By (), setting ¢ = RANK(j) we get

RANKNEXT(RANK(j)) = RANK(SA[RANK(j)] + 1) = RANK(j + 1).  (2)

Hence, given RANKNEXT and RANK(1) we can generate the sequence of val-
ues RANK(2), RANK(3),...,RANK(n) using the recurrence (2). From the se-
quence RANK(1), RANK(2),...,RANK(n) we recover t using the relationship
t[¢] = bwt[RANK(: + 1)]. The corresponding code is shown in Fig. @I (procedure
RankNext2Text).

We conclude this section observing that from the sequence RANK(1),...,
RANK(n) we can also recover the suffix array since k = RANK(4) implies SA[k] =
i. The corresponding code is shown in Fig. Bl (procedure RankNext2SuffixArray).
Note that in RankNext2SuffixArray as soon as we have read rank next[k] in
Line Bl that entry is no longer needed. Therefore, if we replace Line Ml with the
instruction rank next[k] = i++; we get a procedure which stores the suffix
array entries in the array rank next overwriting the old content of the array
(the RANKNEXT map). This property will be used in Section A

2.2 The Algorithm of Kasai et al.

The algorithm of Kasai et al. (algorithm Lcpl3 from now on) takes as input
the text t[1,n] and the corresponding suffix array SA[l,n] and returns the LCP
array. For ¢ = 1,...,n let ¢; denote the LCP between t[i,n] and the suffix
immediately preceding it in the lexicographic order (¢; is undefined when t[i, n)
is the lexicographically smallest suffix). The algorithm Lcpl3 computes the LCP
values in the order ¢1,4s,...,¢,.

The code of Lepl3 is shown in Fig. Bl As a first step (Line [[) the algorithm
computes the rank array RANK[1,n|. Then, at the i-th iteration of the main
loop (Lines BHI3) Lcpl3 computes ¢; as follows. At Line [ the value RANK][d] is
stored in the variable k. If RANK[i] = 1 then t[i,n] is the smallest suffix in the
lexicographic order and ¢; is undefined (we set it to —1 at Line[d]). If RANK[i] > 1,
we compute j = SA[RANK[:] — 1] (Line [@). t[j,n] is the suffix preceding t[i,n]
in the lexicographic order, hence ¢; is the longest common prefix between t[i, n
and t[j,n].

The crucial observation, which ensures that Lcpl3 runs in O(n) time, is that
whenever ¢; and ¢;,_; are both defined we have ¢; > ¢;,_; — 1 (Theorem 1 in [@]).
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Procedure Sa2Bwt Procedure Bwt2RankNext
1. bwt[0]=t[n]; 1. for(i=0;i<=n;i++) {
2. for(i=1;i<=n;i++) { 2. c = bwt[i];
3. 1f(sa[1] == 1) 3. 1f(c == ’#’)
4. bwt[i]="#"; 4. eos_pos = 1ij;
5. else 5. else {
6. bwt[i]=t[sal[i]l-1]; 6. j = ++count[c];
7.} 7. rank_next[jl=1i;
8. %}
9. }
10. return eos_pos;
Procedure RankNext2Text Procedure RankNext2SuffixArray
1. k = eos_pos; i=1; 1. k = eos_pos; i=1;
2. do { 2. while(k!=0) {
3. k = rank_next[k]; 3. nextk = rank_next[k];
4. t[i++] = bwt[k]; 4. salk] = i++;
5. } while(k!'=0); 5. k = nextk;
6. }

Fig. 2. Algorithms related to the Burrows-Wheeler Transform. Procedure Sa2Bwt com-
putes the array bwt given the text t and the suffix array sa. Procedure Bwt2RankNext
stores in rank next the RANKNEXT map and returns the value RANK(1). The pro-
cedure uses the auxiliary array count[l, |X|] which initially contains in count[i] the
number of occurrences in bwt (and therefore in t) of the characters 1,...,7 — 1. Pro-
cedure RankNext2Text recovers the text t given the arrays bwt and rank next and the
value RANK(1) stored in eos_pos. Procedure RankNext2SuffixArray computes the suffix
array given rank next and the value RANK(1) stored in eos_pos.

Procedure Lcpl3

1. for(i=1;i<=n;i++) rank[sal[il]] = i;
2. h=0;

3. for(i=1;i<=n;i++) {

4, k = rank[i];

5.  if(k==1) lcplkl=-1;

6. else {

7. j = salk-11;

8. while(i+h<=n && j+h<=n &% t[i+h]==t[j+h]):
9. h++;:

10. leplk] = h;

11.

12. if (h>0) h--;

13. }

Fig. 3. Algorithm of Kasai et al. for the linear time computation of the LCP array.
The algorithm takes as input the text t and the suffix array sa and stores in lcp the
LCP array. The algorithm uses an auxiliary array rank to store the rank array (which
is the inverse of the suffix array).
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To use this property Lcpl3 maintains the invariant that at the beginning of the
i-th iteration the variable h contains the value ¢;_; — 1. Hence, ¢; is computed
comparing t[i,n] and t[j, n] starting from position h (Lines BHJ). Note that at
Line [0 Lcp13 stores ¢; in LeP[RANK]E]] since the definition of LCP array states
that LcP[t] contains the LCP between t[SA[t], n] and t[SA[t — 1], n].

In our “real world” model, algorithm Lcpl3 requires n bytes for the array t
and 4n bytes for each one of the arrays SA, RANK, and LcP. Therefore its peak
space occupancy is 13n bytes.

3 LCP Computation in 9n Bytes of Storage

In this section we show how to modify the algorithm of Kasai et al. for computing
the LCP array in linear time without using any auxiliary array. As a result we
get an algorithm which only uses 9n bytes of storage. Our approach consists in
using the array lcp for storing both “rank information” and “LCP information”.
Initially the array contains only “rank information”. Then, at each iteration of
the main loop one item of rank information is used and replaced by one item
of LCP information. At the end of the computation the array lcp only contains
LCP information.

Our starting point is the observation that algorithm Lcpl3 (Fig. [3)) uses the
rank information only in Line @lwhere, during the i-th iteration of the main loop,
the algorithm retrieves the value RANK(4). Therefore, Lcpl3 uses the sequence
of rank values RANK(1), RANK(2), ..., RANK(n) exactly in this order. Moreover,
after the i-th iteration of the main loop the value RANK(4) is no longer needed.

In Section we have shown that using the recurrence we can gener-
ate the sequence RANK(1), RANK(2),...,RANK(n) given the RANKNEXT map
and the value RANK(1). The above observations suggest the algorithm Lcp9
whose code is shown in Fig. @l In the first step of Lcp9 (Line [[) we call the
procedure Sa2RankNext which, for j = 1,...,n, stores the value RANKNEXT(j)
in Lcp[j], and returns the value RANK(1). Then, in the i-th iteration of the
main loop (Lines BHIE) given RANK(7) we retrieve RANK(i + 1) from entry
Lcp[RANK(Z)]. Note that as soon as we have retrieved RANK(7 4+ 1) we can
use the entry LOP[RANK(4)] for storing the LCP relative to t[i, n].

Summing up, the main loop of algorithm Lcp9 (Lines BHIB) works as follows.
At the beginning of the i-th iteration the variable k contains the value RANK(%).
In the body of the loop we store in nextk the value lcp[k] which is RANK(i+1);
then we compute ¢; (the LCP between t[i, n] and the suffix preceding it) and we
store it in 1cp[k], which is the right place since k = RANK(7). Finally, we update
k (Line M) and we start the next iteration. Note that the actual computation
of ¢; is done as in the Lcpl3 algorithm; indeed, lines BHIl are identical in both
algorithms. The only difference between our algorithm and the one of Kasai et
al. is the computation of the rank information using the RANKNEXT map rather
than the rank array.

We conclude observing that the correctness of the procedure Sa2RankNext
follows from the correctness of Bwt2RankNext in Fig. 2l and by the relationship
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Procedure Lcp9 Procedure Sa2RankNext (rank next)
1. k = Sa2RankNext(lcp); 1. j = ++count[t[n]];
2. h=0; 2. rank_next[j]=0;

3. for(i=1;i<=n;i++) { 3. for(i=1;i<=n;i++) {
4. nextk = lcplk]; 4. if (sal[il==1)

5. if (k==1) lcplk]=-1; 5. eos_pos = 1i;

6. else { 6. else {

7. j = salk-11; 7. c = tlsalil-1];
8. while(i+h<=n && j+h<=n 8. j = ++count[c];
9. && t[i+h]==t[j+h]) 9. rank_next[j]=i;
10. h++; 10. }

11. lcplk] = h; 11. }

12. } 12. return eos_pos;

13. if (h>0) h--;
14. k=nextk;

Fig. 4. Algorithm Lcp9 for linear time computation of the LCP array using 9n bytes of
storage. The algorithm takes as input the text t and the suffix array sa and stores in
lcp the LCP array. The procedure Sa2RankNext computes the RANKNEXT map given
t and sa. After the procedure call at Line [l of Lcp9 the RANKNEXT map is stored in
the array lcp and the value RANK(1) is stored in the variable k.

between the suffix array and the Burrows-Wheeler Transform (see the procedure
Sa2Bwt in Fig. [2)).

4 LCP Computation in (6 + d)n Bytes of Storage

In this section we describe the algorithm Lcp6 which computes the LCP array
“overwriting” the suffix array in the sense that the LCP array is stored in the
same array which initially contains the suffix array entries.

Recall that the correctness of the algorithm of Kasai et al. follows from the
observation that whenever ¢; and ¢;_; are both defined we have £; > ¢;_1 —1 (see
Section [2.2)). The following Lemma (see [12] for the proof) shows that using the
Burrows-Wheeler Transform of t we can say something more on the relationship
between ¢; and £;_1.

Lemma 1. Let bwt denote the Burrows-Wheeler Transform of t, and let k =
RANK(Z). If k > 1 and bwt[k] = bwt[k — 1] then £; = ¢;_1 — 1. O

Assume now that the array bwt is available, and consider the main loop of
Lep9 (Lines BHIB] in Fig. M]). At the beginning of the i-th iteration the variable
k contains the value k¥ = RANK(7). By Lemma [, if bwt[k] = bwt[k — 1] we
know that ¢; = ¢;_; — 1. Since ¢;_; is stored in the variable h, we conclude
that, if bwt[k] = bwt[k — 1], we can skip Lines BHIT and proceed with the next
iteration. This means that for computing the LCP array we only need the values
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Sa[k — 1)’s for all k’s such that bwt[k] # bwt[k — 1]. This observation is the
starting point of our algorithm.

Let 2z’ denote the number of consecutive equal characters in bwt and let
z = n — 2'. In the algorithm Lcp6 (see Figure []) we evaluate z with a scan
of bwt and we allocate an array sa_aux of size z for storing those suffix array
entries that are needed for computing the LCP array (Lines 2Hd)). Although
we already know which suffix array entries must be stored in sa_aux, to retrieve
these entries efficiently we must store them in the proper order. Let kq, ko, ..., k.,
with k1 < ko < --- < k, denote the indexes such that bwt[k;] # bwt[k; — 1]. By
the above discussion we know that we must store in sa_aux the values SA[k; —
1], SAlke2 — 1], ...,SA[k, — 1]. Note, however, that the value SA[k; — 1] is needed
when we process the suffix t[SA[k;], n]. Since the main loop of the LCP algorithm
considers the suffixes in the order t[1,n],t[2,n],...,t[n,n] in Lcpb we store in
sa_aux[i] the value SA[kw(i) — 1] where 7 is a permutation of 1,...,z such that

SA[k‘ﬂ(l)] < SA[]C,T(Q)] << SA[k‘ﬂ(z)]. (3)

In other words, we store in sa_aux the suffix array entries in the order in which
they will be used by the LCP algorithm. This will make the retrieval a very
simple task.

To obtain such a convenient arrangement of the suffix array entries within
sa_aux, the algorithm Lcpb uses the following two-step procedure. In the first
step (Lines[6HIO) the algorithm computes the RANKNEXT map storing it in the
array sa. Then, it generates the sequence RANK(1), RANK(2), ..., RANK(n) thus
traversing the suffix array entries in the order in which they will be considered by
the LCP computation. When Lcpb6 finds an index & such that bwt[k — 1] # bwt[k]
it stores k—1 in the next empty position of sa_aux (Line[§]). Hence, at the end of
this first step, for i = 1,..., 2, the entry sa aux[i] contains the value k¢ — 1,
where 7 is the permutation defined by ([B). In the second step (Lines T2HI4)
the algorithm recomputes the suffix array and, with a simple scan over sa_aux,
stores in sa_aux[i] the value SA[k, ;) — 1]. Note that we use this elaborate two
step procedure simply because we do not want to store at the same time both
the suffix array and the RANKNEXT map.

Once the array sa_aux is properly initialized, the computation of the LCP
array proceeds as in algorithm Lcp9. First, we store the RANKNEXT map in the
array sa (Line [I6). Then, at each iteration of the main loop (Lines I8H30) a
RANKNEXT value in sa is replaced by a LCP value so that at the end of the
loop sa contains the LCP array. The computation of the value ¢; makes use of
Lemmal[ll. At the beginning of the i-th iteration the variable k contains RANK(7);
if bwt [k-1]==bwt [k] then ¢; is equal to ¢;_; —1 (which is readily available since it
is stored in the variable h); otherwise we retrieve from sa_aux the value SA[k —1]
(Line 23) and we compute ¢; with the while loop of Lines 24H25]

In our “real world” model the total space occupancy of the above algorithm
is 6n + 4z bytes: we use 2n bytes for the arrays t and bwt, 4n bytes for the
array sa (which is used for storing the suffix array, the RANKNEXT map, and
the LCP array), and 4z bytes for sa_aux. This latter amount depends on the
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structure of the input. More precisely, in [I0] it is proven that for any k& > 1 we
have z < |X|*¥ + 2nHy, where |X| is the alphabet size and Hj, is the k-th order
entropy of the input. In practice, for linguistic texts and other “structured”
texts the Burrows-Wheeler Transform usually contains many repetitions and
consequently z is relatively small. If z &~ n/2 (which is not an unusual value) the
total space occupancy of Lcpb is &~ 8n bytes. In the worst case we have z = n
and our algorithm uses 10n bytes. However, if at Line[ we find that z > 3n/4—
which would yield a space occupancy larger than 9n bytes—we can quit Lcp6
and use Lcp9 instead.

Algorithm Lcp6

1. // -—-—- count how many suffix array entries we need ----

2. for(z=0,i=2;i<=n;i++)

3. if (bwt [1-1]!'=bwt [i]) z++;

4. sa_aux=malloc(z*sizeof (int)); // allocate sa_aux[0,z-1]
5. // -——-- determine order in which suffix array entries are needed----
6. k = Bwt2RankNext(sa); // store RankNext in sal[]
7. for(v=0,i=2;i<=n;i++) {

8 if (bwt [k-1] '=bwt [k]) sa_aux[v++]=k-1;

9. k=lcplk]l;

10. }

1. // ———- store needed suffix array entries in sa_aux --——-

12. RankNext2SuffixArray(sa); // store Suffix Array in sal[]
13. for(v=0;v<z;v++)

14. sa_aux[v] = salsa_aux[v]];

15. // —-———- compute the lcp array as usual ----

16. k = Bwt2RankNext(sa); // store RankNext in sal]
17. v=h=0;

18. for(i=1;i<=n;i++) {

19. nextk = salk];

20. if (k==1) salk]l=-1;

21. else if (bwt[k-1]==bwt[k]) sal[k]=h;

22. else {

23. j = sa_aux[v++]; // retrieve salk-1]
24, while(i+h<=n && j+h<=n && t[i+h]==t[j+h])

25. h++;

26. salk] = h;

27. }

28. if (h>0) h--;
29. k=nextk;

Fig. 5. Algorithm Lcp6 for linear time computation of the LCP array using (6 + d)n
bytes of storage. The algorithm takes as input the text t, the Burrows-Wheeler Trans-
form bwt, and the suffix array sa and stores the LCP values in sa (thus overwriting the
suffix array entries). The algorithm uses an auxiliary array sa_aux whose size depends
on the structure of the input text. After the procedure calls at Lines [l and [16] the
RANKNEXT map is stored in sa and the value RANK(1) is stored in k. The procedure
call at Line [[2 stores the suffix array in the array sa overwriting the RANKNEXT map
(see comment at the end of Sect. 2.7)).
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5 Experimental Results

We have tested the algorithms Lcpl3, Lep9, and Lepb on a collection of files with
different lengths and structures (a more detailed experimental analysis can be
found in [12]). For each file we built the suffix array using the ds algorithm [13}14]
which is currently one of the fastest suffix array construction algorithm. Then,
the text and the suffix array were given as input to the algorithms Lcpl3, Lcp9,
and Lcp6 and their running times were measured considering (user+system) time
averaged over five runs. For all tests we used a 1700 MHz Pentium 4 running
GNU/Linux with 1.25GB main memory and 256Kb L2 cache.

In Table [[l we report, for each file and for each algorithm, the running time
over file length. For Lcpb we also report the space occupancy expressed as total
space occupancy over file length. The files in Table [[] are ordered by increasing
average LCP: a large average LCP indicates that the input file contains many
long repeated substrings. Note that the file etezt99.gz has a very small average
LCP since it is a compressed file and essentially consists of a “random” sequence
over the alphabet {0,1,...,255}. The file chr22is a DNA sequence and consists
of an apparently random sequence over the alphabet {a,c,g,t}: its relatively
high average LCP is due to the small cardinality of the underlying alphabet.

Our first observation is that Lcp9 is roughly 10% slower than Lcpl3. We
also notice that for most files both LCP algorithms are faster than the suffix
array construction algorithm. Thus, if we consider the combined time required
to compute suffix array and LCP array, the overhead for using Lcp9 is usually
less than 5% of the total running time. For the algorithm Lcpb we observe that
it is roughly two times slower that Lcpl3. However, we also notice that for most

Table 1. Experimental results for LCP construction algorithms. The second and third
column show the size and average LCP of the input file. The fourth column reports the
time (microseconds per input byte) for the construction of the suffix array. The next
three columns report the time (microseconds per input byte) for the computation of the
LCP array using the algorithms Lcpl3, Lcp9, and Lep6 respectively. The last column
shows the space used by Lcp6 expressed as total space occupancy over file length.

[File |Size (Kb)[Ave. LCP[SA time[Lcp13 time[Lcp9 time[Lcp6 time[Lcp6 space]
etext99.gz] 38,747 2.65]  0.97 1.07 1.18 2.08 9.97
sprot 107,048]  89.08]  1.49 1.00 1.03 1.90 7.01
rfe 113,693]  93.02] 1.18 0.89 0.92 1.66 6.86
howto 38,498| 267.56] 0.99 0.77 0.84 1.48 7.29
reuters 112,022 282.07] 2.65 0.91 0.96 1.77 6.58
linua 113,530] 479.00] 1.04 0.76 0.76 1.35 6.88
jdk18 68,094| 678.94] 267 0.69 0.75 1.33 6.26
etext99 102,809] 1,108.63]  1.55 1.07 1.10 2.02 7.57
chr22 33,743] 1,979.25]  0.96 0.92 1.01 1.76 8.34
gee 84,600| 8,603.21] 1.87 0.69 0.73 1.30 6.75
w3c 101,759]42,299.75]  2.11 0.72 0.79 1.40 6.31
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files Lcpb uses less than 8n bytes. The exceptions are, as expected, calgary.zip
and chr22. We conclude that, although Lcp6 is slower than Lcpl3 and Lcp9, for
most files it yields a significant saving in the peak space occupancy. For very
large files the combination of Lcpb with a “lightweight” suffix sorter [114] can
be the only way to avoid the (deleterious) use of secondary memory.
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