
3 Pairwise alignment

• Introduction to the pairwise sequence alignment problem

• Dot plots

• Scoring schemes

• The principle of dynamic programming

• Alignment algorithms based on dynamic programming

3.1 References

This exposition was developed by Clemens Gröpl. It is based on earlier versions with contributions by Daniel
Huson, Knut Reinert, and Gunnar Klau.

• R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological sequence analysis. Cambridge University Press,
1998. ISBN 0-521-62971-3 (Chapter 2)

• Neil C. Jones, Pavel A. Pevzner: An Introduction to Bioinformatics Algorithms. MIT Press, Cambridge, MA,
2004. ISBN 0-262-10106-8

• D. Gusfield: Algorithms on Trees, Strings, and Sequences. Computer Science and Computational Biology.
Cambridge University Press, 1997, p.212ff

• Chao, Zhang: Sequence comparison. Chapter 2 and 3.

3.2 Importance of sequence alignment

The first fact of biological sequence analysis:
In biomolecular sequences (DNA, RNA, or amino acid sequences), high sequence similarity usually implies
significant functional or structural similarity.

Duplication with modification:
The vast majority of extant proteins are the result of a continuous series of genetic duplications and subsequent
modifications. As a result, redundancy is a built-in characteristic of protein sequences, and we should not
be surprised that so many new sequences resemble already known sequences. . . . all of biology is based on
enormous redundancy. . .

“We didn’t know it at the time, but we found everything in life is so similar, that the same genes that work
in flies are the ones that work in humans.”
(Eric Wieschaus, cowinner of the 1995 Nobel prize in medicine for work on the genetics of Drosophila development.)

[Dan Gusfield, 1997, 212 ff]

Sequence alignment is the procedure of comparing two sequence (pairwise alignment) or more sequences
(multiple alignment) by searching for a series of individual characters or character patterns that are in the same
order in both sequences.
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Two sequences are aligned by writing them across a page in two rows. Identical or similar characters
are placed in the same column, whereas non-identical characters are either placed in the same column as a
mismatch or are opposite a gap in the other sequence.

Two strings: −→ Alignment:

IMISSMISSISSIPPI I-MISSMISSISIPPI-

|||| || ||||

MYMISSISAHIPPIE MYMISS-ISAH-IPPIE

Comparative Genomics

• Gene finding and function determination:
Compare sequence to genes of known function. Two success stories:

– Example 1: ν-sis-oncogene1 (discovered 1984). Comparison with all known genes led to striking
similarity with regular growth gene. Conclusion: oncogene responsible for growth at the wrong
time.

– Example 2: cystic fibrosis gene (discovered 1989). Location narrowed down to 106 nucleotides on
chromosome 7. Compared to all genes→ similarity with gene for ATP binding proteins. Shed light
on the nature of cystic fibrosis.

• High sequence similarity (e. g., human—mouse: 97%) between species allows to study other organisms
in order to understand humans (e. g., Waardenburg’s syndrome)

• Derive information about common origin (evolutionary trees)

• . . .

3.3 Terminology

Two strings: −→ Alignment:

IMISSMISSISSIPPI I-MISSMISSISIPPI-

|||| || ||||

MYMISSISAHIPPIE MYMISS-ISAH-IPPIE

I: Isoleucine, M: Methionine, S: Serine, P: Proline, Y: Tyrosine, A: Alanine, H: Histidine, E: Glutamic Acid, . . .

Two sequences are (globally) aligned by writing them across a page in two rows. Identical (or similar)
characters are placed in the same column and called matches. Non-identical characters are either placed in the
same column as a mismatch, or they are opposite to a gap in the other sequence. Also, we disallow columns that
consist of gaps only.

One way to formalize pairwise sequence alignment is as follows: We are given two sequences x =
(x1, x2, . . . , xm) and y = (y1, y2, . . . , yn) over an alphabet Σ. Let - < Σ be the gap symbol, also called space. Let
h : (Σ ∪ {-})∗ → Σ∗ be the mapping that removes all gap symbols from a sequence over the alphabet Σ ∪ {-}.

For example,
h
(
MYMISS-ISAH-IPPIE

)
= MYMISSISAHIPPIE .

1oncogenes are virus genes that cause cancer-like transformation of infected cells
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Then a global alignment of x and y is a pair of sequences x′, y′ such that

h(x′) = x, h(y′) = y, |x′| = |y′|, and (x′i , y
′

i ) , (-, -) for all i.

Here | · | denotes the length.

• Match - same (or similar) letter in both rows

• Mismatch - different letters in both rows

• Insertion - the letter opposite to a space

• Deletion - the space opposite to a letter

• Indel - a column containing a space

Depending on the input data, there are a number of different variants of alignment that are considered,
among them global alignment, overlap alignment, and local alignment.

global alignment overlap alignment local alignment

In an overlap alignment, we do not charge the end gaps (hence it is also called end-gap free alignment).

A local alignment is the same as a global alignment of two substrings of the sequences.

3.4 Finding alignments

How many alignments are there? Answer: many

How can we find a good pairwise alignment?

Why not simply visualize the data?

3.5 Dot plots

We can draw a matrix spanned up by two sequences and place a dot in each cell for which the correspondig
symbols match. Stretches of matching symbols will show up as diagonal lines this way.



Pairwise alignment, by Clemens GrÃPpl, Knut Reinert, November 21, 2011, 16:45 3003

IMISSMISSISSIPPI
M * *
Y
M * *
I * * * * * *
S ** ** **
S ** ** **
I * * * * * *
S ** ** **
A
H
I * * * * * *
P **
P **
I * * * * * *
E

To obtain cleaner pictures, a window size w and a stringency s are used: A dot is only drawn at point (x, y)
if within w positions around it there are at least s matches.

w = 1, s = 1 w = 3, s = 3

Here is a biological example (DNA sequences which encode the phage lambda and P22 repressor se-
quences):

w = 1, s = 1 w = 11, s = 7 w = 23, s = 15

Tools on the web to play around with:
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• http://arbl.cvmbs.colostate.edu/molkit/dnadot/

3.6 Repeat detection using dot plots

Here is another one. These dot plots of the human LDL receptor (protein sequence) against itself reveal many
repeats in the first 300 positions.

w = 1, s = 1 w = 23, s = 7

3.7 How to score it?

So we see there is an alignment, but do we really have it, written in two rows?

To come up with an algorithm, we need a formal concept when an alignment is “good”, i.e., significant.
Let us have a look at some good and bad examples before we formally introduce a scoring scheme.

3.8 Significance of alignments

In the alignments below, the middle row contains a letter for identical amino acids, and a + if the amino acids
are similar.

1. An alignment between very similar human alpha- and beta hemoglobins:

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH KL

HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

2. Plausible alignment to leghaemoglobin from yellow lupin:

http://arbl.cvmbs.colostate.edu/molkit/dnadot/
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HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL

++ ++++H+ KV + +A ++ +L+ L+++H+ K

LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

3. A spurious high-scoring alignment of human alpha globin to a nematode glutathione S-transferase ho-
mologue:

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD----LHAHKL

GS+ + G + +D L ++ H+ D+ A +AL D ++AH+

F11G11.2 GSGYLVGDSLTFVDLL--VAQHTADLLAANAALLDEFPQFKAHQE

In (1), there are many positions at which the two corresponding residues are identical. Many others are
functionally conservative. E.g., the D-E pair towards the end: both negatively charged amino acids.

In (2), we also see a biologically meaningful alignment, as it is known that the two proteins are evolution-
arily related, have the same 3D structure and both have the same function. However, there are many fewer
identities and gaps have been introduced in the sequences.

In (3), we see an alignment with a similar number of identities or conservative changes. However, this is
a spurious alignment between two proteins that have completely different structure and function.

3.9 Scoring schemes

The basic mutational processes are substitutions, insertions, and deletions. Substitutions give rise to mismatches.
Insertions and deletions give rise to gaps.

The total score assigned to an alignment is the sum of

1. the sum of terms for matches and mismatches,

2. the sum of terms for gaps (i.e., indels).

Formally we can treat the space character just like any other. Then we obtain the following additive scoring
scheme:

The score of an alignment (x′, y′) is ∑
i

δ(x′i , y
′

i ),

where δ : (Σ ∪ {-})2
→ R is a score matrix.

3.10 Classification of amino acids

How should we choose the score matrix δ? Amino acids can be grouped according to chemical properties.



3006 Pairwise alignment, by Clemens GrÃPpl, Knut Reinert, November 21, 2011, 16:45

The BLOSUM50 matrix:
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A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 5 -2 -1 -2 -1 -1 -1 0 -2 -1 -2 -1 -1 -3 -1 1 0 -3 -2 0 -2 -1 -1 -5

R -2 7 -1 -2 -4 1 0 -3 0 -4 -3 3 -2 -3 -3 -1 -1 -3 -1 -3 -1 0 -1 -5

N -1 -1 7 2 -2 0 0 0 1 -3 -4 0 -2 -4 -2 1 0 -4 -2 -3 4 0 -1 -5

D -2 -2 2 8 -4 0 2 -1 -1 -4 -4 -1 -4 -5 -1 0 -1 -5 -3 -4 5 1 -1 -5

C -1 -4 -2 -4 13 -3 -3 -3 -3 -2 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1 -3 -3 -2 -5

Q -1 1 0 0 -3 7 2 -2 1 -3 -2 2 0 -4 -1 0 -1 -1 -1 -3 0 4 -1 -5

E -1 0 0 2 -3 2 6 -3 0 -4 -3 1 -2 -3 -1 -1 -1 -3 -2 -3 1 5 -1 -5

G 0 -3 0 -1 -3 -2 -3 8 -2 -4 -4 -2 -3 -4 -2 0 -2 -3 -3 -4 -1 -2 -2 -5

H -2 0 1 -1 -3 1 0 -2 10 -4 -3 0 -1 -1 -2 -1 -2 -3 2 -4 0 0 -1 -5

I -1 -4 -3 -4 -2 -3 -4 -4 -4 5 2 -3 2 0 -3 -3 -1 -3 -1 4 -4 -3 -1 -5

L -2 -3 -4 -4 -2 -2 -3 -4 -3 2 5 -3 3 1 -4 -3 -1 -2 -1 1 -4 -3 -1 -5

K -1 3 0 -1 -3 2 1 -2 0 -3 -3 6 -2 -4 -1 0 -1 -3 -2 -3 0 1 -1 -5

M -1 -2 -2 -4 -2 0 -2 -3 -1 2 3 -2 7 0 -3 -2 -1 -1 0 1 -3 -1 -1 -5

F -3 -3 -4 -5 -2 -4 -3 -4 -1 0 1 -4 0 8 -4 -3 -2 1 4 -1 -4 -4 -2 -5

P -1 -3 -2 -1 -4 -1 -1 -2 -2 -3 -4 -1 -3 -4 10 -1 -1 -4 -3 -3 -2 -1 -2 -5

S 1 -1 1 0 -1 0 -1 0 -1 -3 -3 0 -2 -3 -1 5 2 -4 -2 -2 0 0 -1 -5

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 2 5 -3 -2 0 0 -1 0 -5

W -3 -3 -4 -5 -5 -1 -3 -3 -3 -3 -2 -3 -1 1 -4 -4 -3 15 2 -3 -5 -2 -3 -5

Y -2 -1 -2 -3 -3 -1 -2 -3 2 -1 -1 -2 0 4 -3 -2 -2 2 8 -1 -3 -2 -1 -5

V 0 -3 -3 -4 -1 -3 -3 -4 -4 4 1 -3 1 -1 -3 -2 0 -3 -1 5 -4 -3 -1 -5

B -2 -1 4 5 -3 0 1 -1 0 -4 -4 0 -3 -4 -2 0 0 -5 -3 -4 5 2 -1 -5

Z -1 0 0 1 -3 4 5 -2 0 -3 -3 1 -1 -4 -1 0 -1 -2 -2 -3 2 5 -1 -5

X -1 -1 -1 -1 -2 -1 -1 -2 -1 -1 -1 -1 -1 -2 -2 -1 0 -3 -1 -1 -1 -1 -1 -5

* -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5

The "extra" four columns are

B wildcard for N or D

Z wildcard for Q or E

X wildcard for any amino acid

* stop codon (not usually used much in protein-protein scoring

but handy for scoring translated sequences)

Later we will explain the derivation of the scoring schemes in more detail. For now, let us assume that
each substitition, insertion and deletion has a specific score. If we use the Blosum50 matrix, we can compute
the score of the following alignment:

HBA_HUMAN G S A Q V K G H G K K V

G + + V K + H G K K V

HBB_HUMAN G N P K V K A H G K K V

score 8 +1 -1 +2 +5 +6 +0+10 +8 +6 +6 +5 = 56

3.11 Gap penalties

Hamming distance and Levenshtein distance

In the simplest case, we do not allow any gaps at all and charge all mismatches at unit cost. This is called
the Hamming distance. The alignment is forced to be on one diagonal of the dot plot.

If we charge all insertions, deletions, and mismatches at unit cost, we obtain the Levenshtein distance. This
measure is also called the edit distance, because it counts the number of elementary edit operations needed to
transform one sequence into the other.

Both scoring schemes have applications in biological sequence analysis, especially for nucleic acids. Often,
however, it is better to

1. distinguish the type of a mismatch, and

2. take the length of consecutive gaps into account.

Linear and affine gap cost

Gaps in an alignment are undesirable and thus penalized. In its simplest form, the cost associated with a
gap of length g ≥ 1 is given by a linear score,

γ(g) = −g · d .

An affine score, however,
γ(g) = −d − (g − 1)e
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often produces better results. Here d is the gap open penalty and e is the gap extension penalty.

co
st

length

co
st

length

co
st

length

d > e d = e d < e

Usually one sets e < d, i.e., there is a large penalty for opening a gap, but a smaller penalty for extending
it. Then affine gap costs favor alignments with fewer but larger gaps. For example:

Using linear gap penalties: GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

GSAQVKGHGKK--------VA--D----A-SALSDLHAHKL

Using affine gap penalties: GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

GSAQVKGHGKKVADA---------------SALSDLHAHKL

The case d < e is sometimes used when comparing output of DNA sequencing machines. There it happens
frequently that single bases are left out near the end of a read.

3.12 Remarks on scoring schemes

1. The scoring schemes we have seen so far are based solely on primary structure. This is a reasonable
approximation especially for DNA. For RNA, one observes that bases which are coupled by secondary
structure are highly correlated. But even for proteins the primary structure can tell us a lot.

2. We will not explain the probabilistic background of the additive scoring scheme (in this lecture), but
simply take it as granted. Thus we will not explain, e.g., how the BLOSUM50 matrix was derived from
experimental data, assuming a certain model of evolution, etc.

3.13 Alignment algorithms

Given a scoring scheme and two input sequences, we need an algorithm to compute the highest-scoring
alignment of the sequences.

We will discuss alignment algorithms based on dynamic programming. Dynamic programming algorithms
play a central role in computational sequence analysis. They are guaranteed to find the highest-scoring
alignment.

Note: For large sequences exact “DP algorithms” can be too slow and heuristics (such as BLAST, FASTA,
MUMMER, QUASAR,. . . ) are then used which perform very well in most cases, but will miss the best
alignment for some sequence pairs.

Paradigm: Dynamic Programming
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Dynamic programming is a powerful algorithmic design principle.

Principle
Compute solutions of “bigger” problems by combining solutions of smaller subproblems. Storing all solutions
avoids recomputing the same quantity over and over again, and a potential exponential blow-up in the running
time.

Well-suited if subproblems share subsubproblems.

Typically applied to optimization problems. Three components:

1. Recursively define the value of an optimal solution

2. Compute values of subproblems in bottom-up fashion (storing the solution values)

3. Construct solution (traceback)

Examples
Fibonacci numbers2, knapsack, longest common subsequence, alignments in database search (BLAST, FASTA),
multiple alignments (clustalW), gene finding (GENSCAN), RNA-folding (mfold), phylogenetic inference
(PHYLIP), . . .

The Fibonacci code discussed in the exercises is available from the web page:
http://www.alice-dsl.net/clemens.groepl/restricted/vl_genomanalyse/files.html

long int fibo_full_recursion( long int n )

{

if ( n == 0 ) return 0;

if ( n == 1 ) return 1;

return fibo_full_recursion(n-1) + fibo_full_recursion(n-2);

}

long int fibo_dyn_prog( long int n )

{

if ( n == 0 ) return 0;

if ( n == 1 ) return 1;

std::vector<long int> fibo_vec;

fibo_vec.resize(n+1);

fibo_vec[0] = 0;

fibo_vec[1] = 1;

for ( int i = 2; i <= n; ++i )

{

fibo_vec[i] = fibo_vec[i-1] + fibo_vec[i-2];

}

return fibo_vec[n];

}

3.14 Global alignment: Needleman-Wunsch algorithm

(Saul Needleman and Christian Wunsch, 1970; improved by Peter Sellers, 1974)

2blackboard

http://www.alice-dsl.net/clemens.groepl/restricted/vl_genomanalyse/files.html
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Consider the problem of finding the optimal global alignment of two sequences x and y. The Needleman-
Wunsch algorithm is a “dynamic program” that solves this problem. What does this mean?

The idea is to build up a table of optimal alignments for all pairs of prefixes of x and y using (already
known) optimal alignments of shorter prefixes of x and y.

We are given two sequences x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn). We will compute a matrix, usually
called dynamic programming table,

F : {0, 1, 2, . . . ,m} × {0, 1, 2, . . . ,n} → R

in which F(i, j) equals the best score of an alignment of the two prefixes (x1, x2, . . . , xi) and (y1, y2, . . . , y j).

Outline of the algorithm: We fill the table F recursively, bottom-up3. We start with initial cases like
F(0, 0) = 0 and then compute each F(i, j) from F(i − 1, j − 1), F(i − 1, j) and F(i, j − 1):

x1 x2 . . . xi−1 xi . . . xm

F(0, 0) F(1, 0) F(2, 0)
...

y1 F(0, 1)
...

y2 F(0, 2)
...

...
...

y j−1 F(i − 1, j − 1) F(i, j − 1)
↖ ↑

y j . . . . . . . . . . . . F(i − 1, j) ← F(i, j)
...

yn

This is applied until the whole matrix F is filled with values. Then F(m,n) is the score of the best global
alignment.

Why can we apply such a recursion?

There are three ways how the last column of an alignment of (x1, x2, . . . , xi) and (y1, y2, . . . , y j) can look like:

xi aligns to y j: xi aligns to a gap: y j aligns to a gap:

I G A xi

L G V y j

A I G A xi

G V C y j -

G A xi - -

S L G V y j

We obtain F(i, j) as the largest score that arises from one of these cases4:

F(i, j) := max


F(i − 1, j − 1) + s(xi, y j)

F(i − 1, j) − d

F(i, j − 1) − d

To complete the description of the recursion, we need to set the initial values on the upper and the left
boundary, F(i, 0) and F(0, j):

We set F(i, 0) = i · d for i = 0, 1, . . . ,m and F(0, j) = j · d for j = 0, 1, . . . ,n.

3This corresponds to step 2 on the DP paradigm slides
4This corresponds to step 1 on the DP paradigm slides
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initial case

recursive case

sequence x

sequence y

The final value F(m,n) is the score of the best global alignment between x and y.

To obtain an alignment corresponding to this score, we still need to find the path of choices that has led the
recursion to the final score. This is called a traceback5

However this is actually easy, as we only have to store one of the symbols

T(i, j) ∈ {←,↖, ↑}

(or a subset thereof) whenever we assign a value to a “DP entry” F(i, j).

3.15 Needleman-Wunsch algorithm

Input: two sequences x and y
Output: optimal alignment and score α

Initialization:
Set F(0, 0) := 0
Set F(i, 0) := −i · d and T(i, 0) := (i − 1, 0) for all i = 1, 2, . . . ,m
Set F(0, j) := − j · d and T(0, j) := (0, j − 1) for all j = 1, 2, . . . ,n
Recurrence:
for i = 1, 2, . . . ,m do:

for j = 1, 2, . . . ,n do:

Set F(i, j) := max


F(i − 1, j − 1) + s(xi, y j)
F(i − 1, j) − d
F(i, j − 1) − d

Set backtrace T(i, j) to the maximizing pair (i′, j′) (this can be encoded e.g. by {↖,←, ↑})
The best score is α := F(m,n)
Traceback:
Set (i, j) := (m,n)
repeat

if T(i, j) = (i − 1, j − 1) print
(xi

y j

)
else if T(i, j) = (i − 1, j) print

(xi
−

)
else print

(
−

y j

)
Set (i, j) := T(i, j)

until (i, j) = (0, 0)

Note that alternative strategies are possible for implementing the traceback.

• As shown in the pseudocode above, we can store the indices of the preceding matrix cell: T(i, j) ∈
{(i−1, j−1), (i, j−1), (i−1, j)}. As a slight variation of the same idea, we can encode the traceback direction

5This corresponds to step 3 on the DP paradigm slides.
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using symbols: T(i, j) ∈ {←,↖, ↑}. Note that the matrix T occupies O(mn) memory, but only O(m + n) of
it is actually used during traceback.

• We can eliminate the additional array T completely and distinguish among the three cases by other means.
Namely, we redo the calculation of F(i, j) = max{. . .} in order to find out the direction for traceback. This
way we have a larger (but still constant) amount of work to perform for each column of the alignment,
which adds up to O(m + n) for the entire alignment, but we avoid O(mn) work for maintaining T.

3.16 An example of global alignment

We will use two short amino acid sequences for illustration:

HEAGAWGHEE and PAWHEAE.

To score the alignment we will use the BLOSUM50 matrix and a gap cost of d = 8.

BLOSUM50 values:

H E A G A W G H E E

P -2 -1 -1 -2 -1 -4 -2 -2 -1 -1
A -2 -1 5 0 5 -3 0 -2 -1 -1
W -3 -3 -3 -3 -3 15 -3 -3 -3 -3
H 10 0 -2 -2 -2 -3 -3 10 0 0
E 0 6 -1 -3 -1 -3 -3 0 6 6
A -2 -1 5 0 5 -3 0 -2 -1 -1
E 0 6 -1 -3 -1 -3 -3 0 6 6

DP matrix: Durbin et al. (1998)

3.17 Web ressources

There is a nice Java applet illustrating the NW algorithm on the web:
http://lectures.molgen.mpg.de/PracticalSection/AliApplet/index.html

EMBOSS is a comprehensive suite of bioinformatics tools.
http://emboss.sourceforge.net/index.html

Many organizations provide online interfaces to the EMBOSS tools, e.g.
http://emboss.bioinformatics.nl/

http://lectures.molgen.mpg.de/PracticalSection/AliApplet/index.html
http://emboss.sourceforge.net/index.html
http://emboss.bioinformatics.nl/
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3.18 Complexity of the Needleman-Wunsch algorithm

We need to store (n + 1)(m + 1) numbers. Each number takes a constant number of calculations to compute:
just three sums and a max.

Hence, the algorithm requires O(nm) time and memory.

3.19 Arbitrary gap costs

A way to deal with arbitrary gap costs is as follows. Assume a gap of length g has cost γ(g). Then we can
replace

F(i, j) := max


F(i − 1, j − 1) + s(xi, y j)
F(i − 1, j) − d
F(i, j − 1) − d

with

F(i, j) := max


F(i − 1, j − 1) + s(xi, y j)
F(i − g, j) − γ(g) g = 1, . . . , i
F(i, j − g) − γ(g) g = 1, . . . , j

However this increases the running time from O(mn) to O(mn max{m,n}), since we have much more
dependencies in the DP recurrence:

active
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recursive case
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sequence y
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linear gap cost
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Remark: For affine gap costs there is are clever ways to do this in O(mn).

3.20 Growth rates

For biological sequence analysis, we prefer algorithms that have time and space requirements that are linear in
the length of the sequences. Quadratic time (O(n2)) algorithms are a little slow, but feasible. Cubic time (O(n3))
algorithms are feasible only for very short sequences.
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3.21 Affine gap costs

The standard alternative to using the above recursion is to use an affine gap score

γ(g) = −d − (g − 1)e,

with d the gap-open score and e the gap-extension score.

We will discuss how to modify the Needleman-Wunsch algorithm for global alignment so as to incorporate
affine gap costs. The resulting algortithm is due to Osamu Gotoh (1982).

In the justification of the Needleman-Wunsch algorithm we made a case distinction based on the last
column of an optimal alignment of the prefixes of both sequences. For affine gap costs, we will need to
consider the second last column as well.

As a consequence, instead of using just one matrix F(i, j) to represent the best score attainable up to xi and
y j, we will now use three matrices M, Ix and Iy, and distinguish the state of the second last column.

Reminder (from Needleman-Wunsch): there are three ways how the last column of an alignment of
(x1, x2, . . . , xi) and (y1, y2, . . . , y j) can look like:

xi aligns to y j: xi aligns to a gap: y j aligns to a gap:

I G A xi

L G V y j

A I G A xi

G V C y j -

G A xi - -

S L G V y j

We introduce three matrices:

1. M(i, j) is the best score up to (i, j), given that xi is aligned to y j,

2. Ix(i, j) is the best score up to (i, j), given that xi is aligned to a gap, and

3. Iy(i, j) is the best score up to (i, j), given that y j is aligned to a gap.

Now we will distinguish the state of the second last column as well:
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xi aligns to y j: xi aligns to a gap: y j aligns to a gap:

M
I G A xi

L G V y j

A I G A xi

G V C y j -

G A G xi -

S L G V y j

Ix
I G A xi

L G - y j

A I G A xi

G V y j - -

G A G xi -

S L G - y j

Iy
I G - xi

L G V y j

A I G - xi

G V C y j -

G xi - - -

S L G V y j

3.22 Gotoh algorithm

The cases in the gray boxes are undesirable because a gap in one sequence is immediately followed by a gap
in the other. We will explicitly exclude them from consideration. (The optimal alignment does not use them
anyway, if −d − e is less than the lowest mismatch score. However the scoring scheme does not always have
this property, so we are really enforcing a new requirement.)

From the remaining seven cases we obtain the following recursions:

Recursion:

M(i, j) = max


M(i − 1, j − 1) + s(xi, y j),
Ix(i − 1, j − 1) + s(xi, y j),
Iy(i − 1, j − 1) + s(xi, y j);

Ix(i, j) = max
{

M(i − 1, j) − d,
Ix(i − 1, j) − e;

Iy(i, j) = max
{

M(i, j − 1) − d,
Iy(i, j − 1) − e.

The formulas for initialization at the upper and left margin (i = 0 respectively j = 0) are derived from the
recursion. However, there are some “impossible cases”, represented by Ix(0, j) and Iy(i, 0). We assign a value of
−∞ to these matrix entries, such that they will not have an influence on the maximum computations.

Initialization:

M(0, 0) = 0, Ix(0, 0) = Iy(0, 0) = −∞

Ix(i, 0) = −d − (i − 1)e, M(i, 0) = Iy(i, 0) = −∞, for i = 1, . . . ,n

Iy(0, j) = −d − ( j − 1)e, M(0, j) = Ix(0, j) = −∞, for j = 1, . . . ,m.

The traceback uses the same ideas as the Needleman-Wunsch algorithm. There are just a few more cases
to consider. . . ;-)
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3.23 Local alignment: Motivation

• Two genes in different species may be similar over short conserved regions and dissimilar over the
remaining regions.
Example:

– Homeobox genes (which regulate embryonic development) have a short region called the homeodomain
that is highly conserved between species.

– A global alignment would not find the homeodomain because it would try to align the entire sequence

• Often we want to find the position of a fragment of DNA in a genomic sequence (with errors).

• DNA toy example:

– Global Alignment:

--T--CC-C-AGT--TATGT-CAGGGGACACG-A-GCATGCAGA-GAC

| || | || | | | ||| || | | | | |||| |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG-T-CAGAT--C

– Local Alignment—better suited to find conserved segment:

tccCAGTTATGTCAGgggacacgagcatgcagagac

||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

3.24 Local alignment: Smith-Waterman algorithm

(Temple Smith and Mike Waterman, 1981)

A local alignment of two sequences x and y is a global alignment of a substring x′ of x and a substring y′ of
y.

Technically speaking, why should we exclude some parts at the beginning and at the end of both sequences
in a local alignment? If these parts of the sequences are evolutionary unrelated, even the best global alignment
of (x1, . . . , xi) and (y1, . . . , y j) (and likewise, for the suffixes) will have a very bad score. As we have seen in the
DNA toy example, this may even enforce that the optimal global alignment does not align the evolutionary
related parts. Therefore we allow to omit these parts in the optimization of the score.

+ − −+ − − +

global alignment overlap alignment local alignment

We modify the recurrence formula for F(i, j) such that we can start a local alignment at any place in the DP
matrix. This means, we replace

F(i, j) := max


F(i − 1, j − 1) + s(xi, y j)
F(i − 1, j) − d
F(i, j − 1) − d

with

F(i, j) := max


0
F(i − 1, j − 1) + s(xi, y j)
F(i − 1, j) − d
F(i, j − 1) − d
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In the Smith-Waterman algorithm, any pair of indices (i, j) can represent the start of a local alignment. In the
Needleman-Wunsch algorithms, this role that was reserved for the upper left corner (0, 0).

Likewise, we start the backtrace at a position (k, `) that maximizes F(k, `), not necessarily at (m,n). This is
written as

(k, `) := arg max{F(k, `) | k = 0, . . . ,m, ` = 0, . . . ,n}

This way, the local alignment can stop before it reaches the end of the sequences.

The backtrace stops when we reach a position (i, j) such that F(i, j) = 0.

3.25 Smith-Waterman algorithm

Input: two sequences x and y
Output: optimal local alignment and score α

Initialization:
Set F(0, 0) := 0 and T(0, 0) = ⊥ (where ⊥means “undefined”)
Set F(i, 0) := 0 and T(i, 0) := ⊥ for all i = 1, 2, . . . ,m
Set F(0, j) := 0 and T(0, j) := ⊥ for all j = 1, 2, . . . ,n
Recurrence:
for i = 1, 2, . . . ,m do:

for j = 1, 2, . . . ,n do:

Set F(i, j) := max


0
F(i − 1, j − 1) + s(xi, y j)
F(i − 1, j) − d
F(i, j − 1) − d

Set backtrace T(i, j) to the maximizing pair (i′, j′), or “undefined” in the first case
(encoded as ∈ {⊥,↖,←, ↑}, respectively)

Set (k, `) := arg max{F(k, `) | k = 0, . . . ,m, ` = 0, . . . ,n}
The best score is α := F(k, `)
Traceback:
Set (i, j) := (k, `)
repeat

if T(i, j) = (i − 1, j − 1) print
(xi

y j

)
else if T(i, j) = (i − 1, j) print

(xi
−

)
else print

(
−

y j

)
Set (i, j) := T(i, j)

until F(i, j) = 0

3.26 An example of local alignment

A local alignment matrix using d = 8 and BLOSUM50 scores:
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Durbin et al. (1998)

3.27 Scoring schemes, revisited

When comparing two biological sequences, we usually want to determine whether and how they diverged
from a common ancestor by a process of mutation and selection.

The basic mutational processes are substitutions, insertions and deletions. The latter two give rise to gaps.

The total score assigned to an alignment is the sum of terms for each aligned pair of residues, plus terms
for each gap.

In a probabilistic interpretation, this will correspond to the the logarithm of the relative likelihood that the
sequences are related, compared to being unrelated.

Using such an additive scoring scheme is based on the assumption that mutations at different sites occur
independently of each other. This is often reasonable for DNA and proteins, but not for structural RNA, where
base pairing introduces very important long-range dependences.

3.28 Substitution matrices

First we consider score terms for aligned residue pairs.

Assume we are given two sequences x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym). The symbols come from
some alphabet A, e.g. the four bases {A, G, C, T} for DNA or, in the case of amino acids, the 20 symbols
{A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V}.

For now we will only consider non-gapped alignments such as:

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH KL

HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

Given a pair of aligned sequences (without gaps), we want to assign a score to the alignment. The two
hypotheses are: The sequences are related or unrelated. The score should measure the relative likelihood that
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the sequences are related, model M, as opposed to being unrelated, model R, i.e.,

P(x, y |M)
P(x, y | R)

.

The unrelated or random model R assumes that the letter a occurs independently with some frequency qa,
and hence the probability of the two sequences is the product:

P(x, y | R) =
∏

i

qxi

∏
j

qy j .

In the match model M, aligned pairs of residues occur with a joint probability pab, which is the probability
that a and b are observed when they have evolved from some unknown original residue c as their common
ancestor.

Thus, the probability for the whole alignment is:

P(x, y |M) =
∏

i

pxi yi .

The ratio of theses two likelihoods is known as the odds ratio:

P(x, y |M)
P(x, y | R)

=

∏
i pxi yi∏

i qxi

∏
i qyi

=
∏

i

pxi yi

qxi qyi

.

To obtain an additive scoring scheme, we take the logarithm to get the log-odds ratio:

S =
∑

i

s(xi, yi),

with

s(a, b) := log
(

pab

qaqb

)
.

We thus obtain a matrix s(a, b) that determines a score for each aligned residue pair, known as a score or
substitution matrix.

For amino-acid alignments, commonly used matrices are the PAM and BLOSUM matrices, for example
the BLOSUM50 matrix we have seen before.

Taking the logarithm of the likelihoods has the advantage that multiplication of probabilities is replaced
with the addition of score values.

In practice the logarithmized values are usually multiplied by 10 or so and then rounded to integers.

Moreover, people often add a constant to each entry in the matrix, other than amino acid character against
a space. Such a “muted” matrix has been observed to be beneficial in obtaining “better” alignments in some
contexts.

Note for example, that the Smith-Waterman algorithm will only work reasonably if the “expected score
value of an alignment column” is negative, i.e.,∑

a,b∈A

s(a, b)qaqb < 0 ,
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because otherwise an extremely long gapless alignment will have an expected nonnegative score simply by
chance, which is clearly not what we want.

Work on substitution matrices was pioneered by Margaret Dayhoff in the 1960’s. The probabilities pa,b
and qa were estimated from the empirical frequencies in sequences that were less than 15% different from one
another. In this similarity range, the few exisiting indels could easily be spotted, and obtaining the alignments
was not a problem.

Since then the methods have been refined considerably, and e.g. the book of Gusfield is recommended for
further reading. (Gusfield, section 15.7.4, p. 383 ff.)

3.29 Reducing the space and time requirements

We have seen that the global and local alignment problem, with linear and with affine gap costs, can be solved
by dynamic programming algorithms in space and time proportional to the product of the lengths of the input
sequences.

Next we will see two approaches to mitigate these resource requirements.

3.30 Computing the score in linear space

The recurrence formulas in the Needleman-Wunsch and the Smith-Watherman algorithm refer only one row
and one column backward in the dynamic programming matrix.

We assume that the outer loop iterates over the column index. Thus, we can carry out the computations
needed for the matrix entry in the lower right corner by using only the values from two consecutive columns
of the matrix at any given time of the execution of the algorithm.

In fact, we can even come along with only one column and a few extra variables.

Thus far, we have distinguished “initialized” and “recursive” cases. The initialization and recursion will
not change, but we will emphasize which entries of the DP matrix which are “in memory” (shaded, pink) The
“active”entry (filled red) belongs to the index pair (i, j) for which the initialization or recursion is being carried
out at the moment.

The pictures should be self-explaining . . .
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At this point ( j = n), the calculations for the present column (with index i) of the DP matrix are finished,
and we can increment the column index (i = 0, . . . ,m) and start from the top for another round of the inner
loop ( j = 0, . . . ,n).

When we have reached the cell at the lower right corner, we know the score of an optimal global alignment.

The algorithm still requires in O(mn) time to run (where m and n are the lengths of the two sequences), but
it uses only O(min{m,n}) memory. (The min is there because we can exchange the two sequences.)

But how can we obtain the actual alignment, not just its score?

Paradigm: Divide et Impera

Divide et impera (lat.) = divide and conquer (engl.) = teile und herrsche (deu.)

The following observation helps. Assume this is an optimal global alignment:
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GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL

++ ++++H+ KV + +A ++ +L+ L+++H+ K

NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

Then we can split this alignment at any position and will obtain two optimal global alignments for both
sides.

GSAQVKGHGKKVADAL | TNAVAHV---D--DMPNALSALSDLHAHKL

++ ++++H+ KV + | +A ++ +L+ L+++H+ K

NNPELQAHAGKVFKLV | YEAAIQLQVTGVVVTDATLKNLGSVHVSKG

(Really? Exercise! For the moment, remember that we assume linear gap costs.)

The idea is to split the alignment problem recursively into smaller pieces, until they become trivial.

More generally, this is the idea of divide and conquer:

“Spend some effort to divide the problem into more manageable parts – then combine the final
solution out of the solutions for the subproblems.”

Examples of divide and conquer algorithms are: merge sort, Karatsuba multiplication, Cooley-Tuckey fast
Fourier transform, . . .

Sounds like a reasonable approach . . . but since we do not have a global alignment yet, we do not know
where to split the sequences.

We have reduced the problem of finding an optimal alignment to another problem: finding an optimal split
position. How can we find the optimal split position in linear space?

3.31 Alignment in linear space

We split the DP matrix at a given fixed column u. We want to split the problem into parts of about the same size,
so we choose u :=

⌊
|x|/2

⌋
.

Then, using dynamic programming in linear space, we find the row v where the global alignment backtrace
crosses the u-th column of the DP matrix.

Once we know that the alignment passes through the cell (u, v) of the DP matrix, we can split the problem
of finding the alignment into a upper left and a lower right part.
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recursive case

initial case

u

v

s
e
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u
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n
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e
 y

sequence x

m

n

0

0

found:

g
iv
e
n
:

x1 · · · xu−1 xu xu+1 · · · xm
F(0, 0)

y1
...

yv−1
yv F(u, v)

yv+1
...

yn F(m,n)

When we have found the global alignments for both parts, we simply concatenate them.

3.32 Finding the row where to cut

The computation for the left half is done using linear space as described above. The problem with the right
half is that we want to know the row v where the traceback would hit the column u.

In the setting of the NW algorithm using a full DP matrix, we could find v by tracing back from (m,n).
However, this would require Ω(mn) space.

Fortunately, we do not need the entire traceback to solve our subproblem! Instead of “incremental”
traceback pointers (the matrix T), we will maintain an array of numbers r (namely, row indices) that point
directly into the u-th column.

For i > u and any j, we assign r(i, j) to a row where a backtracking path from (i, j) crosses the u-th column. (We
say“a row where a path” because the backtracking path need not be unique.)

To save space, we compute the r(i, j) values in linear space (using the same trick we have seen, for the
score) because in the end we are only interested in one particular value: r(m,n). Thus, in fact there is only an
array r( j) of size m + 1, subscripted by j, but we stick to the notation r(·, ·) with two arguments for notational
convenience.

We need a formula to update r. The values r(i, j), for i > u, can be computed by the following recursion:
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Let (i′, j′) be the cell from which F(i, j) is obtained. Then

r(i, j) :=
{

j′, if i′ = u
r(i′, j′), else

Assume that the fat black arrow is used to assign F(i, j). Then r is set as indicated.

(i′, j′)

r(i′, j′)

(i, j)

(i′, j′)

(i, j)

r(i′, j′)

uu

Since r(i, j) is computed from values in the previous and current column, all this can be done in O(n) space.

Finally, the row index we aim at is v = r(m,n). Thus we know the split position (u, v).

3.33 Time complexity of linear space alignment

Now we solve both subalignments by recursive calls of the same algorithm. Since we do not construct the
backtrace at once, we need to recompute many F(i, j) values in recursive calls.

However the total “area” (number of entries) of F which is recomputed in the next stage of subdivision is
only about half as much; and this goes on for its subproblems.

We claim that the total running time is O(mn).

Proof.
First note that the area of the columns u adds up to at most m(n + 1) over the whole run of the algorithm, since
each column is selected at most once. The same bound applies to the rows v, because there can be at most m
recursive calls in total. Thus the area of the “crosses” through all subdivision cells (u, v) is bounded by O(mn).

The time to compute the split position (bm/2c, v) is bounded by

bm/2cn + (m − bm/2c)n = mn.

For the two subproblems in the next level of the recursion this work amounts to

bm/2cv + (m − bm/2c)(n − v) = mn/2

if m is even. If m is odd, we count the extra column separately. The sum of these extra columns during the
complete algorithm will be at most mn.

The sum of the terms over the whole run of the algorithm is bounded by

mn
∞∑

i=0

2−i = 2mn = O(mn).

Therefore the total running time is still O(mn).
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3.34 Banded global alignment

Assume that we are given two sequences of equal length n = m, having only few differences, and we are
interested in finding a global alignment with linear gap score d. In this case, it is possible to reduce the running
time (and memory consumption) to linear. The ideas can be generalized to (a bit) more general settings, but
we will stick to the special case for simplicity and ease of explanation.

Idea: Instead of computing the whole matrix F, we compute only a band of cells along the main diagonal:

0

0

n

n

y

x

k

k

Let 2k denote the height of the band. Obviously, the time complexity of the banded algorithm will be
O(kn).

The question is: Will this algorithm produce an optimal global alignment? What should k be set to?

3.35 The KBand algorithm

Input: two sequences x and y of equal length n, integer k
Output: best score α of global alignment using at most k diagonals
away from main diagonal
Initialization: Set F(i, 0) := −id for all i = 0, 1, 2, . . . , k.
Set F(0, j) := − jd for all j = 0, 1, 2, . . . , k.
for i = 1 to n do

for h = −k to k do
j := i + h
if 1 ≤ j ≤ n then

F(i, j) := F(i − 1, j − 1) + s(xi, y j)
if insideBand(i − 1, j, k) then

F(i, j) := max{F(i, j),F(i − 1, j) − d}
if insideBand(i, j − 1, k) then

F(i, j) := max{F(i, j),F(i, j − 1) − d}
return F(n,n)

To test whether (i, j) is inside the band, we use:
insideBand(i, j, k) := (−k ≤ i − j ≤ k).
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3.36 Searching for high-identity alignments

We can use the KBand algorithm as a fast method for finding high-identity alignments:

If we know that the two input sequences are highly similar and we have a bound b on the number of gaps
that will occur in the best alignment, then the KBand algorithm with k = b will compute an optimal alignment.

For example, in forensics, one must sometimes determine whether a sample of human mtDNA obtained
from a victim matches a sample obtained from a relative (or from a hair brush etc). If two such sequences differ
by more than a couple of base-pairs or gaps, then they are not considered a match.

3.37 Optimal alignments using KBand

Given two sequences x and y of the same length n. For simplicity, let M be a uniform match score and d the
gap penalty.

Question: Let αk be the best score obtained using the KBand algorithm for a given k. When is αk equal to the
optimal global alignment score α?

Lemma If αk ≥M(n − k − 1) − 2(k + 1)d, then αk = α.

Proof. If there exists an optimal alignment with score α that does not leave the band, then clearly αk = α.
Else, all optimal alignments leave the band somewhere. This requires insertion of at least k + 1 gaps in each
sequence, and allows only at most n − k − 1 matches, giving the desired bound. �

3.38 Optimal alignment using repeated KBand

The following algorithm computes an optimal alignment by repeated application of the KBand algorithm, with
larger and larger k:

Input: two sequences x and y of the same length
Output: an optimal global alignment of x and y
Initialize k := 1 (or some small number)
repeat

compute αk using KBand
if αk ≥M(n − k − 1) − 2(k + 1)d then

return αk
k := 2k

end

As usual, we omit details of the traceback.
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3.39 Analysis of time complexity

The algorithm terminates when:
αk ≥M(n − k − 1) − 2(k + 1)d ⇔

αk −Mn + M + 2d ≥ −(M + 2d)k ⇔

−αk + Mn − (M + 2d) ≤ (M + 2d)k ⇔

Mn − αk

M + 2d
− 1 ≤ k

At this point, the total complexity is:

n + 2n + 4n + · · · + kn ≤ 2kn.

So far, this doesn’t look better than nn. To bound the total complexity, we need a bound on k.

When the algorithm stops for k, we must have:

k
2
<

Mn − α k
2

M + 2d
− 1.

There are two cases: If α k
2

= αk = α, then

k < 2
(Mn − α

M + 2d
− 1

)
.

Otherwise, α k
2
< αk = α. Then any optimal alignment must have more than k/2 spaces, and thus

α ≤M(n − k/2 − 1) − 2(k/2 + 1)d ⇒ k ≤ 2
(Mn − α

M + 2d
− 1

)
.

As M + 2d is a constant, it follows that k is bounded by O(∆), with ∆ = Mn − α, and thus the total bound is
O(∆n). �

In consequence, the more similar the sequences, the faster the KBand algorithm will run!
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