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Chapter 2
Basic Algorithmic Techniques

An algorithm is a step-by-step procedure for solving a problem by a computer. Al-
though the act of designing an algorithm is considered as an art and can never be
automated, its general strategies are learnable. Here we introduce a few frameworks
of computer algorithms including greedy algorithms, divide-and-conquer strategies,
and dynamic programming.

This chapter is divided into five sections. It starts with the definition of algo-
rithms and their complexity in Section 2.1. We introduce the asymptotic O-notation
used in the analysis of the running time and space of an algorithm. Two tables are
used to demonstrate that the asymptotic complexity of an algorithm will ultimately
determine the size of problems that can be solved by the algorithm.

Then, we introduce greedy algorithms in Section 2.2. For some optimization
problems, greedy algorithms are more efficient. A greedy algorithm pursues the
best choice at the moment in the hope that it will lead to the best solution in the end.
It works quite well for a wide range of problems. Huffman’s algorithm is used as an
example of a greedy algorithm.

Section 2.3 describes another common algorithmic technique, called divide-and-
conquer. This strategy divides the problem into smaller parts, conquers each part
individually, and then combines them to form a solution for the whole. We use the
mergesort algorithm to illustrate the divide-and-conquer algorithm design paradigm.

Following its introduction by Needleman and Wunsch, dynamic programming
has become a major algorithmic strategy for many optimization problems in se-
quence comparison. The development of a dynamic-programming algorithm has
three basic components: the recurrence relation for defining the value of an optimal
solution, the tabular computation for computing the value of an optimal solution,
and the backtracking procedure for delivering an optimal solution. In Section 2.4,
we introduce these basic ideas by developing dynamic-programming solutions for
problems from different application areas, including the maximum-sum segment
problem, the longest increasing subsequence problem, and the longest common sub-
sequence problem.

Finally, we conclude the chapter with the bibliographic notes in Section 2.5.
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2.1 Algorithms and Their Complexity

An algorithm is a step-by-step procedure for solving a problem by a computer.
When an algorithm is executed by a computer, the central processing unit (CPU)
performs the operations and the memory stores the program and data.

Let n be the size of the input, the output, or their sum. The time or space com-
plexity of an algorithm is usually denoted as a function f(n). Table 2.1 calculates
the time needed if the function stands for the number of operations required by an
algorithm, and we assume that the CPU performs one million operations per second.

Exponential algorithms grow pretty fast and become impractical even when n
is small. For those quadratic and cubic functions, they grow faster than the linear
functions. The constant and log factor matter, but are mostly acceptable in practice.
As a rule of thumb, algorithms with a quadratic time complexity or higher are often
impractical for large data sets.

Table 2.2 further shows the growth of the input size solvable by polynomial and
exponential time algorithms with improved computers. Even with a million-times
faster computer, the 10" algorithm only adds 6 to the input size, which makes it
hopeless for handling a moderate-size input.

These observations lead to the definition of the O-notation, which is very useful
for the analysis of algorithms. We say f(n) = O(g(n)) if and only if there exist two
positive constants ¢ and ng such that 0 < f(n) < cg(n) for all n > ng. In other words,
for sufficiently large n, f(n) can be bounded by g(n) times a constant. In this kind
of asymptotic analysis, the most crucial part is the order of the function, not the
constant. For example, if f(n) = 3n® + 5n, we can say f(n) = O(n?) by letting c = 4
and ng = 10. By definition, it is also correct to say n> = O(n?), but we always prefer
to choose a tighter order if possible. On the other hand, 10" # O(rn*) for any integer
x. That is, an exponential function cannot be bounded above by any polynomial
function.

2.2 Greedy Algorithms

A greedy method works in stages. It always makes a locally optimal (greedy) choice
at each stage. Once a choice has been made, it cannot be withdrawn, even if later we

Table 2.1 The time needed by the functions where we assume one million operations per second.

f(n) n=10 n =100 n = 100000

30n ) 0.0003 second  0.003 second 3 seconds

100nlogon 0.001 second  0.02 second 50 seconds

3n? 0.0003 second  0.03 second 8.33 hours

n’ 0.001 second I second 31.71 years

10" 2.78 hours 3.17 x 10% centuries  3.17 x 109998 centuries
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Table 2.2 The growth of the input size solvable in an hour as the computer runs faster.

f(n) Present speed  1000-times faster 10°-times faster
n Xi 1000x; 10%x,

n? X7 31.62x, 103x,

n? x3 10x3 1023

10" X4 x4+3 x4 +6

realize that it is a poor decision. In other words, this greedy choice may or may not
lead to a globally optimal solution, depending on the characteristics of the problem.

It is a very straightforward algorithmic technique and has been used to solve a
variety of problems. In some situations, it is used to solve the problem exactly. In
others, it has been proved to be effective in approximation.

What kind of problems are suitable for a greedy solution? There are two ingre-
dients for an optimization problem to be exactly solved by a greedy approach. One
is that it has the so-called greedy-choice property, meaning that a locally optimal
choice can reach a globally optimal solution. The other is that it satisfies the princi-
ple of optimality, i.e., each solution substructure is optimal. We use Huffman coding,
a frequency-dependent coding scheme, to illustrate the greedy approach.

2.2.1 Huffman Codes

Suppose we are given a very long DNA sequence where the occurrence probabilities
of nucleotides A (adenine), C (cytosine), G (guanine), T (thymine) are 0.1, 0.1, 0.3,
and 0.5, respectively. In order to store it in a computer, we need to transform it into a
binary sequence, using only 0’s and 1’s. A trivial solution is to encode A, C, G, and
T by “00,” “01,” “10,” and “11,” respectively. This representation requires two bits
per nucleotide. The question is “Can we store the sequence in a more compressed
way?” Fortunately, by assigning longer codes for frequent nucleotides G and T, and
shorter codes for rare nucleotides A and C, it can be shown that it requires less than
two bits per nucleotide on average.

In 1952, Huffman [94] proposed a greedy algorithm for building up an optimal
way of representing each letter as a binary string. It works in two phases. In phase
one, we build a binary tree based on the occurrence probabilities of the letters. To
do so, we first write down all the letters, together with their associated probabilities.
They are initially the unmarked terminal nodes of the binary tree that we will build
up as the algorithm proceeds. As long as there is more than one unmarked node left,
we repeatedly find the two unmarked nodes with the smallest probabilities, mark
them, create a new unmarked internal node with an edge to each of the nodes just
marked, and set its probability as the sum of the probabilities of the two nodes.

The tree building process is depicted in Figure 2.1. Initially, there are four un-
marked nodes with probabilities 0.1, 0.1, 0.3, and 0.5. The two smallest ones are
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Fig. 2.1 Building a binary tree based on the occurrence probabilities of the letters.

with probabilities 0.1 and 0.1. Thus we mark these two nodes and create a new
node with probability 0.2 and connect it to the two nodes just marked. Now we have
three unmarked nodes with probabilities 0.2, 0.3, and 0.5. The two smallest ones are
with probabilities 0.2 and 0.3. They are marked and a new node connecting them
with probabilities 0.5 is created. The final iteration connects the only two unmarked
nodes with probabilities 0.5 and 0.5. Since there is only one unmarked node left,
i.e., the root of the tree, we are done with the binary tree construction.

After the binary tree is built in phase one, the second phase is to assign the binary
strings to the letters. Starting from the root, we recursively assign the value “zero”
to the left edge and “one” to the right edge. Then for each leaf, i.e., the letter, we
concatenate the 0’s and 1’s from the root to it to form its binary string representation.
For example, in Figure 2.2 the resulting codewords for A, C, G, and T are “000,”
“000,” “01,” and “1,” respectively. By this coding scheme, a 20-nucleotide DNA
sequence “GTTGTTATCGTTTATGTGGC” will be represented as a 34-bit binary
sequence “0111011100010010111100010110101001.” In general, since 3 x 0.1 +
3x0.142x0.3+1x0.5=1.7, we conclude that, by Huffman coding techniques,
each nucleotide requires 1.7 bits on average, which is superior to 2 bits by a trivial
solution. Notice that in a Huffman code, no codeword is also a prefix of any other
codeword. Therefore we can decode a binary sequence without any ambiguity. For
example, if we are given “0111011100010010111100010110101001,” we decode
the binary sequence as “01” (G), “1” (T), “1”” (T), “01” (G), and so forth.

The correctness of Huffman’s algorithm lies in two properties: (1) greedy-choice
property and (2) optimal-substructure property. It can be shown that there exists an
optimal binary code in which the codewords for the two smallest-probability nodes
have the same length and differ only in the last bit. That’s the reason why we can
contract them greedily without missing the path to the optimal solution. Besides,
after contraction, the optimal-substructure property allows us to consider only those
unmarked nodes.
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Fig. 2.2 Huffman code assignment.

Let n be the number of letters under consideration. For DNA, n is 4 and for
English, n is 26. Since a heap can be used to maintain the minimum dynamically
in O(logn) time for each insertion or deletion, the time complexity of Huffman’s
algorithm is O(nlogn).

2.3 Divide-and-Conquer Strategies

The divide-and-conquer strategy divides the problem into a number of smaller sub-
problems. If the subproblem is small enough, it conquers it directly. Otherwise, it
conquers the subproblem recursively. Once the solution to each subproblem has
been done, it combines them together to form a solution to the original problem.

One of the well-known applications of the divide-and-conquer strategy is the
design of sorting algorithms. We use mergesort to illustrate the divide-and-conquer
algorithm design paradigm.

2.3.1 Mergesort

Given a sequence of n numbers {(ay,as, ... ,an), the sorting problem is to sort these
numbers into a nondecreasing sequence. For example, if the given sequence is
(65,16,25,85,12,8,36,77), then its sorted sequence is (8,12,16,25,36,65,77,85).

To sort a given sequence, mergesort splits the sequence into half, sorts each
of them recursively, then combines the resulting two sorted sequences into one
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sorted sequence. Figure 2.3 illustrates the dividing process. The original input se-
quence consists of eight numbers. We first divide it into two smaller sequences, each
consisting of four numbers. Then we divide each four-number sequence into two
smaller sequences, each consisting of two numbers. Here we can sort the two num-
bers by comparing them directly, or divide it further into two smaller sequences,
each consisting of only one number. Either way we’ll reach the boundary cases
where sorting is trivial. Notice that a sequential recursive process won’t expand the
subproblems simultaneously, but instead it solves the subproblems at the same re-
cursion depth one by one.

How to combine the solutions to the two smaller subproblems to form a solu-
tion to the original problem? Let us consider the process of merging two sorted
sequences into a sorted output sequence. For each merging sequence, we maintain
a cursor pointing to the smallest element not yet included in the output sequence.
At each iteration, the smaller of these two smallest elements is removed from the
merging sequence and added to the end of the output sequence. Once one merg-
ing sequence has been exhausted, the other sequence is appended to the end of the
output sequence. Figure 2.4 depicts the merging process. The merging sequences
are (16,25,65,85) and (8,12,36,77). The smallest elements of the two merging
sequences are 16 and 8. Since 8 is a smaller one, we remove it from the merging
sequence and add it to the output sequence. Now the smallest elements of the two
merging sequences are 16 and 12. We remove 12 from the merging sequence and
append it to the output sequence. Then 16 and 36 are the smallest elements of the
two merging sequences, thus 16 is appended to the output list. Finally, the resulting
output sequence is (8,12,16,25,36,65,77,85). Let N and M be the lengths of the

65 16 25 85)12 8 36 77

65 16]25 85 12 8 |36 77

25 8 12 8 36 77

Fig. 2.3 The top-down dividing process of mergesort.
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Fig. 2.4 The merging process of mergesort.

two merging sequences. Since the merging process scans the two merging sequences
linearly, its running time is therefore O(N + M) in total.

After the top-down dividing process, mergesort accumulates the solutions in
a bottom-up fashion by combining two smaller sorted sequences into a larger
sorted sequence as illustrated in Figure 2.5. In this example, the recursion depth
is [log, 8] = 3. At recursion depth 3, every single element is itself a sorted se-
quence. They are merged to form sorted sequences at recursion depth 2: (16,65),
(25,85), (8,12), and (36,77). At recursion depth 1, they are further merged into
two sorted sequences: (16,25,65,85) and (8,12,36,77). Finally, we merge these
two sequences into one sorted sequence: (8,12,16,25,36,65,77,85).

It can be easily shown that the recursion depth of mergesort is [log, n] for sorting
n numbers, and the total time spent for each recursion depth is O(n). Thus, we
conclude that mergesort sorts n numbers in O(nlogn) time.

2.4 Dynamic Programming

Dynamic programming is a class of solution methods for solving sequential decision
problems with a compositional cost structure. It is one of the major paradigms of
algorithm design in computer science. Like the usage in linear programming, the
word “programming” refers to finding an optimal plan of action, rather than writing
programs. The word “dynamic” in this context conveys the idea that choices may
depend on the current state, rather than being decided ahead of time.

Typically, dynamic programming is applied to optimization problems. In such
problems, there exist many possible solutions. Each solution has a value, and we
wish to find a solution with the optimum value. There are two ingredients for an
optimization problem to be suitable for a dynamic-programming approach. One is
that it satisfies the principle of optimality, i.e., each solution substructure is optimal.
Greedy algorithms require this very same ingredient, too. The other ingredient is
that it has overlapping subproblems, which has the implication that it can be solved
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Fig. 2.5 Accumulating the solutions in a bottom-up manner.

more efficiently if the solutions to the subproblems are recorded. If the subproblems
are not overlapping, a divide-and-conquer approach is the choice.

The development of a dynamic-programming algorithm has three basic com-
ponents: the recurrence relation for defining the value of an optimal solution, the
tabular computation for computing the value of an optimal solution, and the back-
tracking procedure for delivering an optimal solution. Here we introduce these basic
ideas by developing dynamic-programming solutions for problems from different
application areas.

First of all, the Fibonacci numbers are used to demonstrate how a tabular com-
putation can avoid recomputation. Then we use three classic problems, namely, the
maximum-sum segment problem, the longest increasing subsequence problem, and
the longest common subsequence problem, to explain how dynamic-programming
approaches can be used to solve the sequence-related problems.

2.4.1 Fibonacci Numbers

The Fibonacci numbers were first created by Leonardo Fibonacci in 1202. It is a
simple series, but its applications are nearly everywhere in nature. It has fascinated
mathematicians for more than 800 years. The Fibonacci numbers are defined by the
following recurrence:

=0,

F =1,

Fi=F_1+F_ fori>2.
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By definition, the sequence goes like this: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368,
75025, 121393, and so forth. Given a positive integer n, how would you compute
F,? You might say that it can be easily solved by a straightforward divide-and-
conquer method based on the recurrence. That’s right. But is it efficient? Take the
computation of Fjo for example (see Figure 2.6). By definition, Fyq is derived by
adding up Fy and Fg. What about the values of Fy and F3? Again, Fy is derived by
adding up Fg and F7; Fg is derived by adding up F and Fg. Working toward this
direction, we’ll finally reach the values of Fy and Fy, i.e., the end of the recursive
calls. By adding them up backwards, we have the value of Fjg. It can be shown that
the number of recursive calls we have to make for computing F, is exponential in n.

Those who are ignorant of history are doomed to repeat it. A major drawback of
this divide-and-conquer approach is to solve many of the subproblems repeatedly.
A tabular method solves every subproblem just once and then saves its answer in a
table, thereby avoiding the work of recomputing the answer every time the subprob-
lem is encountered. Figure 2.7 explains that F, can be computed in O(n) steps by
a tabular computation. It should be noted that F, can be computed in just O(logn)
steps by applying matrix computation.

2.4.2 The Maximum-Sum Segment Problem

Given a sequence of numbers A = {(ay, ay, . .. ,a,), the maximum-sum segment prob-

lem is to find, in A, a consecutive subsequence, i.e., a substring or segment, with

the maximum sum. For each position i, we can compute the maximum-sum seg-

ment ending at that position in O(i) time. Therefore, a naive algorithm runs in
", 0(i) = O(n?) time.

Fig. 2.6 Computing Fio by divide-and-conquer.
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Fig. 2.7 Computing Fyo by a tabular computation.

Now let us describe a more efficient dynamic-programming algorithm for this
problem. Define S[i] to be the maximum sum of segments ending at position i of A.
The value S[i] can be computed by the following recurrence:

Slil = a; +max{S[i —1],0} if i > 1,
[i]= aj ifi=1.

If S[i — 1] < 0, concatenating @; with its previous elements will give a smaller
sum than q; itself. In this case, the maximum-sum segment ending at position i is a;
itself.

By a tabular computation, each S[i] can be computed in constant time for i from 1
to n, therefore all S values can be computed in O(n) time. During the computation,
we record the largest S entry computed so far in order to report where the maximum-
sum segment ends. We also record the traceback information for each position i so
that we can trace back from the end position of the maximum-sum segment to its
start position. If S[i — 1] > 0, we need to concatenate with previous elements for a
larger sum, therefore the traceback symbol for position i is “«—." Otherwise, “1” is
recorded. Once we have computed all S values, the traceback information is used
to construct the maximum-sum segment by starting from the largest S entry and
following the arrows until a “1” is reached. For example, in Figure 2.8, A = (3, 2,
-6, 5, 2, -3, 6,-4, 2). By computing from i = 1 to i = n, we have § = (3,5,-1,5,7,
4, 10,6, 8). The maximum S entry is S[7] whose value is 10. By backtracking from
S[7], we conclude that the maximum-sum segment of A is (5, 2, -3, 6), whose sum
is 10.

3 2 6|5 2 3|64 2

§/3 5 1|5 7 4106 8
Teée—¢ e«

Fig. 2.8 Finding a maximum-sum segment.
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Let prefix sum P[i] = Z_’}:; a;j be the sum of the first i elements. It can be easily

seen that Y|_;ax = P[j] — P[i — 1]. Therefore, if we wish to compute for a given
position the maximum-sum segment ending at it, we could just look for a minimum
prefix sum ahead of this position. This yields another linear-time algorithm for the
maximum-sum segment problem.

2.4.3 Longest Increasing Subsequences

Given a sequence of numbers A = (aj,ay,...,d,), the longest increasing subse-
quence problem is to find an increasing subsequence in A whose length is maximum.
Without loss of generality, we assume that these numbers are distinct. Formally
speaking, given a sequence of distinct real numbers A = (aj,az,...,a,), sequence
B = (by,by,...,b;) is said to be a subsequence of A if there exists a strictly increas-
ing sequence (i},i,...,i) of indices of A such that for all j =1,2,...,k, we have
ai; = b;. In other words, B is obtained by deleting zero or more elements from A.
We say that the subsequence B is increasing if by < by < ... < b;. The longest in-
creasing subsequence problem is to find a maximum-length increasing subsequence
of A.

For example, suppose A = (4, 8, 2, 7, 3, 6, 9, 1, 10, 5), both (2,3,6) and
(2,7,9,10) are increasing subsequences of A, whereas (8,7,9) (not increasing) and
(2,3,5,7) (not a subsequence) are not.

Note that we may have more than one longest increasing subsequence, so we use
“a longest increasing subsequence” instead of “the longest increasing subsequence.”
Let L[i] be the length of a longest increasing subsequence ending at position i. They
can be computed by the following recurrence:

Lm _ { 1 +max_,~:0,__,7,-,1{L[j] | a; < a;}ifi >0,
0 ifi=0.

Here we assume that ag is a dummy element and smaller than any element in A,
and L[0] is equal to 0. By tabular computation for every i from 1 to n, each L[i] can be
computed in O(i) steps. Therefore, they require in total Y, O(i) = O(n?) steps. For
each position i, we use an array P to record the index of the best previous element
for the current element to concatenate with. By tracing back from the element with
the largest L value, we derive a longest increasing subsequence.

Figure 2.9 illustrates the process of finding a longest increasing subsequence of
A=(4,8,2,7,3,6,9, 1, 10, 5). Take i = 4 for instance, where a4 = 7. Its previous
smaller elements are a; and a3, both with L value equaling 1. Therefore, we have
L[4] = L[1] + 1 = 2, meaning that the length of a longest increasing subsequence
ending at position 4 is of length 2. Indeed, both {a;,a4) and (a3, a4) are an increasing
subsequence ending at position 4. In order to trace back the solution, we use array
P to record which entry contributes the maximum to the current L value. Thus, P[4]
can be 1 (standing for a;) or 3 (standing for a3). Once we have computed all L and
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P values, the maximum L value is the length of a longest increasing subsequence
of A. In this example, L[9] = 5 is the maximum. Tracing back from P[9], we have
found a longest increasing subsequence (a3,as,a¢,a7,a9), i.e., (2,3,6,9,10).

In the following, we briefly describe a more efficient dynamic-programming al-
gorithm for delivering a longest increasing subsequence. A crucial observation is
that it suffices to store only those smallest ending elements for all possible lengths
of the increasing subsequences. For example, in Figure 2.9, there are three entries
whose L value is 2, namely a, = 8, a4 = 7, and as = 3, where as is the smallest. Any
element after position 5 that is larger than a; or ay is also larger than as. Therefore,
as can replace the roles of ay and a4 after position 5.

Let SmallestEnd k] denote the smallest ending element of all possible increasing
subsequences of length k ending before the current position i. The algorithm pro-
ceeds for i from 1 to n. How do we update SmallestEnd|[k] when we consider a;?
By definition, it is easy to see that the elements in SmallestEnd are in increasing
order. In fact, a; will affect only one entry in SmallestEnd. If a; is larger than all
the elements in SmallestEnd, then we can concatenate a; to the longest increas-
ing subsequence computed so far. That is, one more entry is added to the end of
SmallestEnd. A backtracking pointer is recorded by pointing to the previous last el-
ement of SmallestEnd. Otherwise, let SmallestEnd[k'] be the smallest element that
is larger than a;. We replace SmallestEnd[k'] by a; because now we have a smaller
ending element of an increasing subsequence of length .

Since SmallestEnd is a sorted array, the above process can be done by a binary
search. A binary search algorithm compares the query element with the middle ele-
ment of the sorted array, if the query element is larger, then it searches the larger half
recursively. Otherwise, it searches the smaller half recursively. Either way the size of
the search space is shrunk by a factor of two. At position i, the size of SmallestEnd
is at most i. Therefore, for each position i, it takes O(logi) time to determine the
appropriate entry to be updated by a;. Therefore, in total we have an O(nlogn)-time
algorithm for the longest increasing subsequence problem.

Figure 2.10 illustrates the process of finding a longest increasing subsequence
of A=(4,8,2,7,3,6,9, 1, 10, 5). When i = 1, there is only one increasing
subsequence, i.e., (4). We have SmallestEnd[1] = 4. Since a) = 8 is larger than
SmallestEnd|[1], we create a new entry SmallestEnd[2] = 8 and set the backtracking

i1 2 3 4 5 6 7 8 9 10
A4 gl2l7)3]elo]1]10 5‘
1 2 1.2 2 3 4 1/(s 3\
P_;O 10 1 35 6 0 7 5

Fig. 2.9 An O(n?)-time algorithm for finding a longest increasing subsequence.
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pointer P[2] = 1, meaning that a, can be concatenated with a; to form an increas-
ing subsequence (4,8). When a3 = 2 is encountered, its nearest larger element in
SmallestEnd is SmallestEnd[1] = 4. We know that we now have an increasing sub-
sequence (2) of length 1. So SmallestEnd|[1] is changed from 4 to a3 = 2 and P[3] =
0. When i = 4, we have SmallestEnd[1] = 2 < ay =7 < SmallestEnd[2] = 8. By
concatenating a4 with Smallest[1], we have a new increasing subsequence (2,7) of
length 2 whose ending element is smaller than 8. Thus, SmallestEnd|[2] is changed
from 8 to a4 = 7 and P[4] = 3. Continue this way until we reach ajg. When ayg is
encountered, we have SmallestEnd[2] =3 < ajo = 5 < SmallestEnd|3] = 6. We set
SmallestEnd(3] = ajo =5 and P[10] = 5. Now the largest element in Smallest End is
SmallestEnd([5] = ag = 10. We can trace back from ag by the backtracking pointers
P and deliver a longest increasing subsequence (a3, as, ag,a7,a9), i.e., (2,3,6,9, 10).

2.4.4 Longest Common Subsequences

A subsequence of a sequence S is obtained by deleting zero or more elements from
S. For example, (P,R,E, D), (S,D,N), and (P,R,E,D,E,N,T) are all subsequences
of (P,R,E,S,I,D,E,N,T), whereas (S,N,D) and (P,E,F) are not.

Recall that, given two sequences, the longest common subsequence (LCS) prob-
lem is to find a subsequence that is common to both sequences and its length is
maximized. For example, given two sequences

/1 2 3 4 5 6 7 8 9 10
Al 418127 ]|3|6]9]1]10]5
n
2134 (11(5]3
L1212 S5
P10 1]0|3|3|5|6|0]|7]|5

SmallestEnd | 4 |4 |2 |2 2|22 ]|1]1]1
8 8|7 (33|33 |3]3

616 |6 |6 |5

919919

10 | 10

Fig. 2.10 An O(nlogn)-time algorithm for finding a longest increasing subsequence.
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(P.R,E,S,I,D,E,N,T)

and

(P,R,0,V,I,D,E,N,C,E),
(P,R,D,N) is a common subsequence of them, whereas (P,R, V) is not. Their LCS
is (P,R,1,D,E,N).

Now let us formulate the recurrence for computing the length of an LCS of two
sequences. We are given two sequences A = (aj,ay,...,ay), and B=(by,by,...,b,).
Let lenli, j] denote the length of an LCS between (a;,ay,...,a;) (a prefix of A) and
(by,b,...,b;) (aprefix of B). They can be computed by the following recurrence:

0 iti=0or j=0,
lenli,jl=< lenli—1,j—1]+1 if i, j>0and a; = bj,
max{len[i, j— 1],len[i — 1, j]} otherwise.

In other words, if one of the sequences is empty, the length of their LCS is just
zero. If a; and b; are the same, an LCS between (ay,a2,...,a;), and (b1,b2,...,b;)
is the concatenation of an LCS of (aj,az,...,a;,—1) and (by,b2,...,b;—1) and a;.
Therefore, leni, j] = len[i — 1, j— 1] + 1 in this case. If a; and b; are different, their
LCS is equal to either an LCS of (ay,a2,...,a;), and (by,ba,...,bj_1), or that of
(ay,az,...,ai—1),and (by,by,...,b;). Its length is thus the maximum of lenl[i, j — 1]
and len[i — 1, j].

Figure 2.11 gives the pseudo-code for computing len([i, j]. For each entry (i, j),
we retain the backtracking information in prevli, j]. If len[i — 1, j — 1] contributes
the maximum value to len]i, j], then we set prevl[i, j] =\ Otherwise prevl[i, j] is
set to be “1” or “—" depending on which one of len[i — 1, j] and len][i, j — 1] con-
tributes the maximum value to len[i, j]. Whenever there is a tie, any one of them will

Algorithm LCS_LENGTH(A = {(ay,ay,...,am), B=(b1,b,...,by))
begin
for i — 0 to m do len[i,0] — 0
for j — 1 tondo len|0, ] — 0O
fori — 1 tomdo
for j — 1 tondo

if aj = b_,‘ then
lenli, j] « lenli—1,j— 1]+ 1
previi, jl ="\

else if len[i — 1, j] > len[i, j — 1] then
lenli, j] — lenli— 1, j]
prev(i, jl 1"

else

lenli, j] « lenli, j— 1]
previi, j| ="
return /en and prev
end

Fig. 2.11 Computation of the length of an LCS of two sequences.
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e} 0 P 1t 2 42 X3 «—3 3 «3 «3 <3
o o‘T1Tz‘T2$3f313T3f373
R 0T112T2T31313T31‘3‘]‘3
| o?yfz,\srafsfsfsfafs
T OT‘T2T3T3T3T3T3T3\4
H ot 1 t2 43 4t3 t3 t3 43t ta
M 0T11‘21‘3f3T3\4+—4+—4f4

Fig. 2.12 Tabular computation of the length of an LCS of (A,L,G,O,R,I,T,H,M) and
(A,L,1,G,N,M,EN,T).

work. These arrows will guide the backtracking process upon reaching the terminal
entry (m,n). Since the time spent for each entry is O(1), the total running time of
algorithm LCS_LENGTH is O(mn).

Figure 2.12 illustrates the tabular computation. The length of an LCS of

<A7L7 G7 07R717 T»H7M>

and
(A,L,1,G,N,M,E,N,T)

is 4.

Besides computing the length of an LCS of the whole sequences, Figure 2.12
in fact computes the length of an LCS between each pair of prefixes of the two
sequences. For example, by this table, we can also tell the length of an LCS between
(A,L,G,O,R) and (A,L,I,G) is 3.

Algorithm LCS_OUTPUT(A = (ay,az,...,an), prev, i, j)
begin
if i =0 or j = 0 then return
if prev(i, jl =“\" then
LCS_OUTPUT(A, prev,i—1, j—1)
print g;
else if prev(i, j] =“1” then LCS_OUTPUT(A, prev, i— 1, j)
else LCS_OUTPUT(A, prev, i, j— 1)
end

Fig. 2.13 Delivering an LCS.



32 ) 2 Basic Algorithmic Techniques

Once algorithm LCS_LENGTH reaches (m,n), the backtracking information re-
tained in array prev allows us to find out which common subsequence contributes
len[m, n], the maximum length of an LCS of sequences A and B. Figure 2.13 lists the
pseudo-code for delivering an LCS. We trace back the dynamic-programming ma-
trix from the entry (m, n) recursively following the direction of the arrow. Whenever
a diagonal arrow “~\” is encountered, we append the current matched letter to the
end of the LCS under construction. Algorithm LCS_OUTPUT takes O(m + n) time
in total since each recursive call reduces the indices i and/or j by one.

Figure 2.14 backtracks the dynamic-programming matrix computed in Fig-
ure 2.12. It outputs (A, L, G, T) (the shaded entries) as an LCS of

(A,L,G,0,R,1,T,H,M)

and
(A,L,I1, G, N, M ,E ,N,T).

ol o o o o 0o 0 0 0 0

;(A"; 0N 1«1 DI DI PRI DI DEIPE D P
Lo PR 22 |«2 «2 «2 «2 <2 «2
G °T172T2\3"“3*—3*_3‘-—3*“3
o otttz tatats tatoitaits
R 0§T1‘1‘2T213T3‘T3T313T3
' ot t2XN3 ts ts ts ta|falts
Ty 0ottt s ts ts s N4
H 071T2T3T3?313T3 t 3|14
M A N e d EI

Fig. 2.14 Backtracking process for finding an LCS of (A,L,G,O,R,[,T,H,M) and
(A,L,I,G,N,M,E,N,T).

2.5 Bibliographic Notes and Further Reading

This chapter presents three basic algorithmic techniques that are often used in de-
signing efficient methods for various problems in sequence comparison. Readers can
refer to algorithm textbooks for more instructive tutorials. The algorithm book (or
“The White Book”) by Cormen et al. [52] is a comprehensive reference of data struc-
tures and algorithms with a solid mathematical and theoretical foundation. Manber’s
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book [133] provides a creative approach for the design and analysis of algorithms.
The book by Baase and Gelder [17] is a good algorithm textbook for beginners.

2.1

As noted by Donald E. Knuth [113], the invention of the O-notation originated
from a number-theory book by P. Bachmann in 1892.

2.2

David A. Huffman [94] invented Huffman coding while he was a Ph.D. student
at MIT. It was actually a term paper for the problem of finding the most efficient
binary coding scheme assigned by Robert M. Fano.

2.3

There are numerous sorting algorithms such as insertion sort, bubblesort, quick-
sort, mergesort, to name a few. As noted by Donald E. Knuth [114], the first program
ever written for a stored program computer was the mergesort program written by
John von Neumann in 1945.

24

The name “dynamic programming” was given by Richard Bellman in 1957 [25].
The maximum-sum segment problem was first surveyed by Bentley and is linear-
time solvable using Kadane’s algorithm [27].



Chapter 3
Pairwise Sequence Alignment

Pairwise alignment is often used to reveal similarities between sequences, deter-
mine the residue-residue correspondences, locate patterns of conservation, study
gene regulation, and infer evolutionary relationships.

This chapter is divided into eight sections. It starts with a brief introduction in
Section 3.1, followed by the dot matrix representation of pairwise sequence com-
parison in Section 3.2.

Using alignment graph, we derive a dynamic-programming method for aligning
globally two sequences in Section 3.3. An example is used to illustrate the tabular
computation for computing the optimal alignment score as well as the backtracking
procedure for delivering an optimal global alignment.

Section 3.4 describes a method for delivering an optimal local alignment, which
involves only a segment of each sequence. The recurrence for an optimal local align-
ment is quite similar to that for global alignment. To reflect the flexibility that an
alignment can start at any position of the two sequences, an additional entry “zero”
is added.

In Section 3.5, we address some flexible strategies for coping with various scor-
ing schemes. Affine gap penalties are considered more appropriate for aligning DNA
and protein sequences. To favor longer gaps, constant gap penalties or restricted
affine gap penalties could be the choice.

Straightforward implementations of the dynamic-programming algorithms con-
sume quadratic space for alignment. For certain applications, such as careful anal-
ysis of a few long DNA sequences, the space restriction is more important than the
time constraint. Section 3.6 introduces Hirschberg’s linear-space approach. -

Section 3.7 discusses several advanced topics such as constrained sequence align-
ment, similar sequence alignment, suboptimal alignment, and robustness measure-
ment.

Finally, we conclude the chapter with the bibliographic notes in Section 3.8.
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3.1 Introduction

In nature, even a single amino acid sequence contains all the information necessary
to determine the fold of the protein. However, the folding process is still mysterious
to us, and some valuable information can be revealed by sequence comparison. Take
a look at the following sequence:

THETR UTHIS MOREI MPORT ANTTH ANTHE FACTS

What did you see in the above sequence? By comparing it with the words in the
dictionary, we find the tokens “FACTS,” “IMPORTANT,” “IS,” “MORE,” “THAN,”
“THE,” and “TRUTH.” Then we figure out the above is the sentence “The truth is
more important than the facts.”

Even though we have not yet decoded the DNA and protein languages, the emerg-
ing flood of sequence data has provided us with a golden opportunity of investigating
the evolution and function of biomolecular sequences. We are in a stage of compil-
ing dictionaries for DNA, proteins, and so forth. Sequence comparison plays a major
role in this line of research and thus becomes the most basic tool of bioinformatics.

Sequence comparison has wide applications to molecular biology, computer sci-
ence, speech processing, and so on. In molecular biology, it is often used to reveal
similarities among sequences, determine the residue-residue correspondences, lo-
cate patterns of conservation, study gene regulation, and infer evolutionary relation-
ships. It helps us to fish for related sequences in databanks, such as the GenBank
database. It can also be used for the annotation of genomes.

GTACGTCGG
|

A e

C . ®
A I

T ®

G—e

T ®

Cc

T ®

Fig. 3.1 A dot matrix of the two sequences ATACATGTCT and GTACGTCGG.
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3.2 Dot Matrix

A dot matrix is a two-dimensional array of dots used to highlight the exact matches
between two sequences. Given are two sequences A = (aj,as,...,an) (or A =
aja;z...ay in short), and B = (by,by,...,b,). A dot is plotted on the (i, j) entry of
the matrix if a; = b;. Users can easily identify similar regions between the two se-
quences by locating those contiguous dots along the same diagonal. Figure 3.1 gives
a dot matrix of the two sequences ATACATGTCT and GTACGTCGG. Dashed lines
circle those regions with at lease three contiguous matches on the same diagonal.

A dot matrix allows the users to quickly visualize the similar regions of two se-
quences. However, as the sequences get longer, it becomes more involved to deter-
mine their most similar regions, which can no longer be answered by merely looking
at a dot matrix. It would be more desirable to automatically identify those similar
regions and rank them by their “similarity scores.” This leads to the development of
sequence alignment.

3.3 Global Alignment

Following its introduction by Needleman and Wunsch in 1970, dynamic program-
ming has become a major algorithmic strategy for many optimization problems in
sequence comparison. This strategy is guaranteed to produce an alignment of two
given sequences having the highest score for a number of useful alignment-scoring
schemes.

Given two sequences A = aay...ay, and B=bb;...b,, an alignment of A and
B is obtained by introducing dashes into the two sequences such that the lengths of
the two resulting sequences are identical and no column contains two dashes. Let X
denote the alphabet over which A and B are defined. To simplify the presentation, we
employ a very simple scoring scheme as follows. A score 6(a,b) is defined for each
(a,b) € X x X. Each indel, i.e., a column with a space, is penalized by a constant
B. The score of an alignment is the sum of ¢ scores of all columns with no dashes
minus the penalties of the gaps. An optimal global alignment is an alignment that

deletion gap insertion gap

AAAAAAAA v 4

ATACATGTCTE—»T

-5 +8+8+8 -3 -3 +8+8+8 -5 -3 = 29

Fig. 3.2 An alignment of the two sequences ATACATGTCT and GTACGTCGG.
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maximizes the score. By global alignment, we mean that both sequences are aligned
globally, i.e., from their first symbols to their last.

Figure 3.2 gives an alignment of sequences ATACATGTCT and GTACGTCGG
and its score. In this and the next sections, we assume the following simple scoring
scheme. A match is given a bonus score 8, a mismatch is penalized by assigning
score —5, and the gap penalty for each indel is —3. In other words, 6(a,b) =8 if a
and b are the same, o(a,b) = —5 if a and b are different, and § = —3.

It is quite helpful to recast the problem of aligning two sequences as an equiva-
lent problem of finding a maximum-scoring path in the alignment graph defined in
Section 1.2.2, as has been observed by a number of researchers. Recall that the align-
ment graph of A and B is a directed acyclic graph whose vertices are the pairs (i, j)
wherei € {0,1,2,...,m} and j € {0,1,2,...,n}. These vertices are arrayed in m + 1
rows and n+ 1 columns. The edge set consists of three types of edges. The substitu-
tion aligned pairs, insertion aligned pairs, and deletion aligned pairs correspond to
the diagonal edges, horizontal edges, and vertical edges, respectively. Specifically, a
vertical edge from (i — 1, j) to (i, j), which corresponds to a deletion of g;, is drawn
for i € {1,2,...,m} and j € {0,1,2,...,n}. A horizontal edge from (i, j— 1) to
(i,/) » which corresponds to an insertion of b;, is drawn for i € {0,1,2,...,m} and
J€1{1,2,...,n}. A diagonal edge from (i — 1, — 1) to (i, j) , which corresponds to
a substitution of a; with bj, is drawn for i € {1,2,...,m} and j € {1,2,...,n}.

It has been shown that an alignment corresponds to a path from the leftmost cell
of the first row to the rightmost cell of the last row in the alignment graph. Figure 3.3
gives another example of this correspondence.

Let S[i, j] denote the score of an optimal alignment between ajay...q;, and
b1b;y...b;. By definition, we have S[0,0] = 0, S[i,0] = —f x i, and S[0, j] = — 8 X j.
With these initializations, S[i, j] for i € {1,2,...,m} and j € {1,2,...,n} can be
computed by the following recurrence.

GT ACGT C GG
\ : deletion gap insertion gap

4
ATACIATIGT CT|-
GTAC|- -|GTC G|G

N

0404 >»0 >» >

Fig. 3.3 A path in an alignment graph of the two sequences ATACATGTCT and GTACGTCGG.
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S[l— Ia./] _ﬁv
S[i, j] = max ¢ S[i,j—1]-B,
Sli—1,j—1]+0(a;, bj).

Figure 3.4 explains the recurrence by showing that there are three possible ways
entering into the grid point (i, j), and we take the maximum of their path weights.
The weight of the maximum-scoring path entering (i, j) from (i — 1, j) vertically
is the weight of the maximum-scoring path entering (i — 1, j) plus the weight of
edge (i — 1, j) — (i, /). That is, the weight of the maximum-scoring path entering
(i,j) with a deletion gap symbol at the end is S[i — 1, j] — B. Similarly, the weight
of the maximum-scoring path entering (i, j) from (i, j — 1) horizontally is S[i, j —
1] — B and the weight of the maximum-scoring path entering (i, j) from (i—1,j—
1) diagonally is S[i — 1, j — 1] + o(aj,b;). To compute S[i, j], we simply take the
maximum value of these three choices. The value S[m,n] is the score of an optimal
global alignment between sequences A and B.

Figure 3.5 gives the pseudo-code for computing the score of an optimal global
alignment. Whenever there is a tie, any one of them will work. Since there are
O(mn) entries and the time spent for each entry is O(1), the total running time of
algorithm GLOBAL_ALIGNMENT_SCORE is O(mn).

Now let us use an example to illustrate the tabular computation. Figure 3.6 com-
putes the score of an optimal alignment of the two sequences ATACATGTCT and
GTACGTCGG, where a match is given a bonus score 8, a mismatch is penalized by
a score —5, and the gap penalty for each gap symbol is —3. The first row and col-
umn of the table are initialized with proper penalties. Other entries are computed
in order. Take the entry (5,3) for example. Upon computing the value of this entry,
the following values are ready: S[4,2] = —3, S[4,3] = 8, and S[5,2] = —6. Since the
edge weight of (4,2) — (5,3) is 8 (a match symbol “A”), the maximum score from
(4,2) to (5,3) is =3+ 8 = 5. The maximum score from (4,3) is 8 —3 = 5, and the

\ \ \ S[i-1, /11 S[i-1, /]

\ - .
N Sl 11 S[i-1. /]

i ~< E:::::Z:i>

S[i, j-1] Spi. 71

Fig. 3.4 There are three ways entering the grid point (i, ;).
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Algorithm GLOBAL_ALIGNMENT_SCORE(A =aay...ay, B=0b\b;...b,)
begin
5[0,0] — 0
for j— 1tondoS[0,j] — —Bxj
for i — 1 to m do
S[i,0] — —B x i
for j — 1tondo
S[l" lv]] - ﬁ
Sli, j] « max ¢ S[i,j—1]-PB
Sli—1,j— 1]+ o(ai,bj)
Output S[m, n] as the score of an optimal alignment.
end

Fig. 3.5 Computation of the score of an optimal global alignment.

maximum score from (5,2) is —6 —3 = —9. Taking the maximum of them, we have
S[5,3] = 5. Once the table has been computed, the value in the rightmost cell of the
last row, i.e., S[10,9] = 29, is the score of an optimal global alignment.

In Section 2.4.4, we have shown that if a backtracking information is saved for
each entry while we compute the dynamic-programming matrix, an optimal solu-
tion can be derived following the backtracking pointers. Here we show that even if
we don’t save those backtracking pointers, we can still reconstruct an optimal so-

G TACGTTCGG
0 3|6 -9-12/-15-18 -21|-24 -27
3 58 2|1 -4 -7 -10]-13-16
6 83 0364 125
9110 11 8|5 2 -1/-4 7
12-14/-3 8 19 16 13 10 7 4
17/-6 51614 11 8 |5 2
-181-20/-9 | 2 1311 22 1916 13
21-10-12/ -1 |10 2119 17|27 24
2413/ 2 -4 7 |18 29 26 24 22
27 -16/-5 -7 | 4 15 26 37|34 31
-30 19/ -8 -10| 1 |12 23 343229

40 460 4> 0> 4 >
o

Fig. 3.6 The score of an optimal global alignment of the two sequences ATACATGTCT and
GTACGTCGG, where a match is given a bonus score 8, a mismatch is penalized by a score —35,
and the gap penalty for each gap symbol is —3.
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lution by examining the values of an entry’s possible contributors. Figure 3.7 lists
the pseudo-code for delivering an optimal global alignment, where an initial call
GLOBAL_ALIGNMENT_OUTPUT(A, B, S, m, n) is made to deliver an optimal global
alignment. Specifically, we trace back the dynamic-programming matrix from the
entry (m,n) recursively according to the following rules. Let (i, j) be the entry under
consideration. If i = 0 or j = 0, we simply output all the insertion pairs or deletion
pairs in these boundary conditions. Otherwise, consider the following three cases. If
Sli,j] =S[li—1,j— 1]+ c(a;,b;), we make a diagonal move and output a substitu-
a;

bj )

tion pair ( If S[i, j] = S[i — 1, j] — B, then we make a vertical move and output

a deletion pair (a,- > Otherwise, it must be the case where S[i, j] = S[i,j— 1] — B.

We simply make a horizontal move and output an insertion pair { , ) Algorithm

bj
GLOBAL_ALIGNMENT-OUTPUT takes O(m + n) time in total since each recursive
call reduces i and/or j by one. The total space complexity is O(mn) since the size of
the dynamic-programming matrix is O(mn). In Section 3.6, we shall show that an
optimal global alignment can be recovered even if we don’t save the whole matrix.

Figure 3.8 delivers an optimal global alignment by backtracking from the right-
most cell of the last row of the dynamic-programming matrix computed in Fig-
ure 3.6. We start from the entry (10,9) where S[10,9] = 29. We have a tie there
because both S[10,8] — 3 and S[9, 8] — 5 equal to 29. In this illustration, the horizon-
tal move to the entry (10,8) is chosen. Interested readers are encouraged to try the

Algorithm GLOBAL_ALIGNMENT_OUTPUT(A = a4y ...am, B=0b1by...b,, S, i, j)
begin
ifi=0or j =0 then

if i > 0 then for i/ — 1 to i do print (Li")

if j > 0 then for j/ — 1 to j do print (l; )
i

return

if S[i, j]=S[i—1,j— 1]+ o (aj,b;) then
GLOBAL_ALIGNMENT_OUTPUT(A, B, S,i— 1, j—1)

ai

b

else if S[i, j] = S[i— 1, j] — B then
GLOBAL_ALIGNMENT_OUTPUT(A, B, S, i—1, j)

print (T )

else
GLOBAL_.ALIGNMENT_OUTPUT(A, B, S, i, j— 1)

print ( bj)

Fig. 3.7 Backtracking procedure for delivering an optimal global alignment.

print (

end
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G T ACGTTZCGG

0 -3 -6 -9 -12-15-18/-21-24-27
i -13)-16

ATACATGTCT -
GTAC--GTCGG _
5 +8+8+8 3 -3 +8+8 48 5 -3 = 29

- 0O 4 6 4 >» 0O >» A >

Fig. 3.8 Computation of an optimal global alignment of sequences ATACATGTCT and
GTACGTCGG, where a match is given a bonus score 8, a mismatch is penalized by a score —5,
and the gap penalty for each gap symbol is —3.

diagonal move to the entry (9,8) for an alternative optimal global alignment, which
is actually chosen by GLOBAL_ALIGNMENT_-OUTPUT. Continue this process until
the entry (0,0) is reached. The shaded area depicts the backtracking path whose
corresponding alignment is given on the right-hand side of the figure.

It should be noted that during the backtracking procedure, we derive the aligned
pairs in a reverse order of the alignment. That’s why we make a recursive call before
actually printing out the pair in Figure 3.7. Another approach is to compute the
dynamic-programming matrix backward from the rightmost cell of the last row to
the leftmost cell of the first row. Then when we trace back from the leftmost cell of
the first row toward the rightmost cell of the last row, the aligned pairs are derived
in the same order as in the alignment. This approach could avoid the overhead of
reversing an alignment.

3.4 Local Alignment

In many applications, a global (i.e., end-to-end) alignment of the two given se-
quences is inappropriate; instead, a local alignment (i.e., involving only a part of
each sequence) is desired. In other words, one seeks a high-scoring local path that
need not terminate at the corners of the dynamic-programming matrix.

Let S[i, j] denote the score of the highest-scoring local path ending at (i, j) be-
tween ajay ...a;, and byby...b;. S[i, j] can be computed as follows.
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07
S[i, j] = max g&;i’ﬁ :g:
S[i“ l,j— 1}+0’(ai,b_i).

The recurrence is quite similar to that for global alignment except the first en-
try “zero.” For local alignment, we are not required to start from the source (0,0).
Therefore, if the scores of all possible paths ending at the current position are all
negative, they are reset to zero. The largest value of S[i, j] is the score of the best
local alignment between sequences A and B.

Figure 3.9 gives the pseudo-code for computing the score of an optimal local
alignment. Whenever there is a tie, any one of them will work. Since there are O(mn)
entries and the time spent for each entry is O(1), the total running time of algorithm
LOCAL_ALIGNMENT_SCORE is O(mn).

Now let us use an example to illustrate the tabular computation. Figure 3.10 com-
putes the score of an optimal local alignment of the two sequences ATACATGTCT
and GTACGTCGG, where a match is given a bonus score 8, a mismatch is penalized
by a score —5, and the gap penalty for each gap symbol is —3. The first row and col-
umn of the table are initialized with zero’s. Other entries are computed in order. Take
the entry (5,5) for example. Upon computing the value of this entry, the following
values are ready: S[4,4] = 24, S[4,5] = 21, and S[5,4] = 21. Since the edge weight
of (4,4) — (5,5) is —5 (a mismatch), the maximum score from (4,4) to (5,5) is
24 —5=19. The maximum score from (4,5) is 21 — 3 = 18, and the maximum score
from (5,4) is 21 — 3 = 18. Taking the maximum of them, we have S[5,5] = 19. Once

Algorithm LOCAL_ALIGNMENT_SCORE(A = a1az ...y, B=b\b3...by)
begin
§[0,0] — 0
Best — 0
End; —0
End; —0
for j — 1 tondo S[0,,] <0
for i — 1 tom do
S[i,0] <0
for j — 1 tondo

0
. Sli—1,j]-8
St - max ) g D) g

Sli—1,j—1]+0(a;,b;)
if S[i, j] > Best then
Best — S[i, j]
End; — i
Endj « j
Output Best as the score of an optimal local alignment.
end

Fig. 3.9 Computation of the score of an optimal local alignment.
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G TACGTTCGG
00 0 0/0 0/0/ 0 00
A 0O O O 85 200 00
T 0,0 8 5[3 010 7 41
A0 0O 5 16(1310/7 5 20
C 0 0 2 1324 21 1815 12| 9
A 0 0 0 1021 19(16 13 10 7
T 0|0 8 7|18 16|27 24 21|18
G 0 8 5 3|15 26|24 22 3229
T 05 16 13[12 23|34 3129 27
C 0 2 13 1121 20|31(42)39 36
T 0,0 10 8 |18 17|28 39 37|34

Fig. 3.10 Computation of the score of an optimal local alignment of the sequences ATACATGTCT
and GTACGTCGG.

the table has been computed, the maximum value, i.e., S[9,7] = 42, is the score of
an optimal local alignment.

Figure 3.11 lists the pseudo-code for delivering an optimal local alignment,
where an initial call LOCAL_ALIGNMENT_OUTPUT(A, B, S, End;, End;) is made
to deliver an optimal local alignment. Specifically, we trace back the dynamic-
programming matrix from the maximum-score entry (End;, End;) recursively ac-
cording to the following rules. Let (i, j) be the entry under consideration. If S[i, j] =
0, we have reached the beginning of the optimal local alignment. Otherwise, con-
sider the following three cases. If S[i,j] = S[i — 1,j— 1] + o(a;,b;), we make a
diagonal move and output a substitution pair <Z: ) If S[i, j] = S[i— 1, j] — B, then

we make a vertical move and output a deletion pair cii . Otherwise, it must be the
case where Sli, j] = S[i,j— 1] — B. We simply make a horizontal move and output

an insertion pair (b— ) Algorithm LOCAL_ALIGNMENT_OUTPUT takes O(m + n)
J
time in total since each recursive call reduces i and/or j by one. The space com-

plexity is O(mn) since the size of the dynamic-programming matrix is O(mn). In
Section 3.6, we shall show that an optimal local alignment can be recovered even if
we don’t save the whole matrix.

Figure 3.12 delivers an optimal local alignment by backtracking from the max-
imum scoring entry of the dynamic-programming matrix computed in Figure 3.6.

3.4 Local Alignment 45

Algorithm LOCAL_ALIGNMENT_OUTPUT(A = ayay...am, B=01by...b,, S, i, )
begin

if S[i, j] = O then return

if S[i, jl =S[i—1,j— 1]+ 6(a;,b;) then

LOCAL_ALIGNMENT_OUTPUT(A, B, S,i—1, j— 1)
aj

bj
else if S[i, j] = S[i— 1, j] — B then

LOCAL_ALIGNMENT_OUTPUT(A, B, S, i— 1, j)

print (_ )

else
LOCAL_ALIGNMENT_OUTPUT(A, B, S, i, j— 1)

print ( bj>

end
Fig. 3.11 Computation of an optimal local alignment.

print

We start from the entry (9,7) where S[9,7] = 42. Since S[8,6] +8=34+8=42=
S[9,7], we make a diagonal move back to the entry (8,6). Continue this process until
an entry with zero value is reached. The shaded area depicts the backtracking path
whose corresponding alignment is given on the right-hand side of the figure.

Further complications arise when one seeks & best alignments, where k > 1. For
computing an arbitrary number of non-intersecting and high-scoring local align-
ments, Waterman and Eggert [198] developed a very time-efficient method. It
records those high-scoring candidate regions of the dynamic-programming matrix
in the first pass. Each time a best alignment is reported, it recomputes only those
entries in the affected area rather than recompute the whole matrix. Its linear-space
implementation was developed by Huang and Miller [92].

On the other hand, to attain greater speed, the strategy of building alignments
from alignment fragments is often used. For example, one could specify some frag-
ment length w and work with fragments consisting of a segment of length at least
w that occurs exactly or approximately in both sequences. In general, algorithms
that optimize the score over alignments constructed from fragments can run faster
than algorithms that optimize over all possible alignments. Moreover, alignments
constructed from fragments have been very successful in initial filtering criteria
within programs that search a sequence database for matches to a query sequence.
Database sequences whose alignment score with the query sequence falls below
a threshold are ignored, and the remaining sequences are subjected to a slower
but higher-resolution alignment process. The high-resolution process can be made
more efficient by restricting the search to a “neighborhood” of the alignment-from-
fragments. Chapter 4 will introduce four such homology search programs: FASTA,
BLAST, BLAT, and PatternHunter.
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Fig. 3.12 Computation of an optimal local alignment of the two sequences ATACATGTCT and
GTACGTCGG.

3.5 Various Scoring Schemes

In this section, we shall briefly discuss how to modity the dynamic programming
methods to copy with three scoring schemes that are frequently used in biological
sequence analysis.

3.5.1 Affine Gap Penalties

For aligning DNA and protein sequences, affine gap penalties are considered more
appropriate than the simple scoring scheme discussed in the previous sections.
“Affine” means that a gap of length k is penalized o + k x B, where o and 8 are
both nonnegative constants. In other words, it costs o to open up a gap plus 8 for
each symbol in the gap. Figure 3.13 computes the score of a global alignment of the
two sequences ATACATGTCT and GTACGTCGG under affine gap penalties, where
a match is given a bonus score 8, a mismatch is penalized by a score —5, and the
penalty for a gap of length k is —4 — k x 3.

In order to determine if a gap is newly opened, two more matrices are used to
distinguish gap extensions from gap openings. Let D(i, j) denote the score of an op-
timal alignment between ajay ...a; and by by ... b; ending with a deletion. Let I(i, j)
denote the score of an optimal alignment between aja;...a; and byby...b; end-
ing with an insertion. Let S(i, j) denote the score of an optimal alignment between
ayay...a; and b]bz...b,'.

By definition, D(i, j) can be derived as follows.
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-4 -4

ATACATGTCT;_11
GTAC|- -/GTCGG|
5 +8+8+8 -3 -3 +8 +8 +8 -5 -3 =29

Fig. 3.13 The score of a global alignment of the two sequences ATACATGTCT and GTACGTCGG
under affine gap penalties.

I

Jmax {S(.J)—a—(i~i) x B}
max{ max {S({',j)—a—(i—)xB}S(i—1.j)—a—p)
= max{_ max {S(',J) =~ ((i=1)=1)x p~B}.5(i~ 1)~ o~ B}

=max{D(i—1,j)—B,S(i—1,j)—a—B}.

D(i, j)

This recurrence can be explained in an alternative way. Recall that D(i, j) denotes
the score of an optimal alignment between aja,...a; and b1 b, ...b; ending with a
deletion. If such an alignment is an extension of the alignment ending at (i — 1, j)
with a deletion, then it costs only 8 for such a gap extension. Thus, in this case,
D(i,j) = D(i— 1, j) — B. Otherwise, it is a new deletion gap and an additional gap-
opening penalty « is imposed. We have D(i, j) = S(i— 1, j) —a — .

In a similar way, we derive I(i, j) as follows.

10j) = | max {S(. /)~ (j=J)x B}

= max{ _max {8,/ ) —a—(i—j)xB},S@Gi,j—1)—a—B}
<j<j-2

=max{I(i,j—1)—B,S(i,j—1)—a—B}.

Therefore, with proper initializations, D(i, j), I(i, j) and S(i, j) can be computed
by the following recurrences:

. D(i—1,j) =B,
D(l’j):max{S(i—l,jj)—a——ﬁ;

- 1(i,j—1)-B,
I(i,)) :maX{S(z’,jj—l)—a—ﬁ;
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D(i, j),
S(i, j) =max< I(i, ),
S(l'f 1,j— 1)-{—0'(61[,1).,‘).

3.5.2 Constant Gap Penalties

Now let us consider the constant gap penalties where each gap, regardless of its
length, is charged with a nonnegative constant penalty o.

Let D(i, j) denote the score of an optimal alignment between aja;...a; and
bib,...b; ending with a deletion. Let I(i, j) denote the score of an optimal align-
ment between aja;...a; and bib, ... b; ending with an insertion. Let S(i, j) denote
the score of an optimal alignment between ajay...a; and byb, ... bj. With proper
initializations, D(i, j), I(i, j) and S(i, j) can be computed by the following recur-
rences. In fact, these recurrences can be easily derived from those for the affine gap
penalties by setting f to zero. A gap penalty is imposed when the gap is just opened,
and the extension is free of charge.

. D(i—1,)),
D(i, j) zmax{S(i_ l,jj) .

I(i, j) = max { g((l,:jj: l]))’_ o

D(i, j),
S(i,j) = max q I(i, ),
S(i—1,j—1)+0(ai,b;).

3.5.3 Restricted Affine Gap Penalties

Another interesting scoring scheme is called the restricted affine gap penalties, in
which a gap of length k is penalized by o + f(k) x B, where o and 3 are both
nonnegative constants, and f (k) = min{k, £} for a given positive integer £.

In order to deal with the free long gaps, two more matrices D' (i, j) and I'(i, j) are
used to record the long gap penalties in advance. With proper initializations, D(i, j),

PR D(i_lv.)_ﬁv
D(””:ma"{S(i—l,f>—a—ﬁ;
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Fig. 3.14 There are seven ways entering the three grid points of an entry (i, j).

. D'(i—1,)),
D(l’j)Mmax{S(i—l,j)—a—éx/B;

1(i,)) = max{l(i’j.:]) :ﬁ’

S(i,j—1)—o—B;

o r'i,j—1),
’("J)“ma"{S(i,j-1)~a—12><[3;

D(i, j),
D'(i, j),
S(i,j) =max< I(i, ),
I'(i, j),
Sii—1,j—1)+0(a;bj).

3.6 Space-Saving Strategies

Straightforward implementation of the dynamic-programming algorithms utilizes
quadratic space to produce an optimal global or local alignment. For analysis of
long DNA sequences, this space restriction is more crucial than the time constraint.
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J1

Fig. 3.15 Entry locations of S~ just before the entry value is evaluated at (i, /).

Because of this, different methods have been proposed to reduce the space used for
aligning globally or locally two sequences.

We first describe a space-saving strategy proposed by Hirschberg in 1975 [91].
It uses only “linear space,” i.e., space proportional to the sum of the sequences’
lengths. The original formulation was for the longest common subsequence problem
that is discussed in Section 2.4.4. But the basic idea is quite robust and works readily
for aligning globally two sequences with affine gap costs as shown by Myers and
Miller in 1988 [150]. Remarkably, this space-saving strategy has the same time
complexity as the original dynamic programming method presented in Section 3.3.

To introduce Hirschberg’s approach, let us first review the original algorithm
presented in Figure 3.5 for aligning two sequences of lengths m and n. It is apparent
that the scores in row i of dynamic programming matrix S are calculated from those
in row i — 1. Thus, after the scores in row i of S are calculated, the entries in row
i — 1 of S will no longer be used and hence the space used for storing these entries
can be recycled to calculate and store the entries in row i + 1. In other words, we
can get by with space for two rows, since all that we ultimately want is the single
entry S[m,n] in the rightmost cell of the last row.

In fact, a single array S~ of size n, together with two extra variables, is adequate.
S~[j] holds the most recently computed value for each 1 < j < n, so that as soon as
the value of the jth entry of S~ is computed, the old value at the entry is overwrited.
There is a slight conflict in this strategy since we need the old value of an entry to
compute a new value of the entry. To avoid this conflict, two additional variables,
say s and c, are introduced to hold the new and old values of the entry, respectively.
Figure 3.15 shows the locations of the scores kept in S~ and in variables s and c.
When S7[;] is updated, ™[] holds the score in the entry (i, ') in row i for each
j' < j, and it holds the score in the entry (i — 1, /) for any j' > j. Figure 3.16 gives
the pseudo-code for computing the score of an optimal global alignment in linear
space.

In the dynamic programming matrix S of aligning sequences A = aa; ...a,, and
B=0bby...by, S[i, j] denotes the optimal score of aligning ajay ...a; and by by ... b;
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Algorithm FORWARD_SCORE(A = aya;...apy, B=0b1b;...b,)

begin
ST[0] 0
for j— 1tondoS~[j]—S7[j—1]-8
for i — 1 to mdo
s+ S71[0]
c—S57[0]-B
S7[0] ¢

for j — 1tondo

{S‘[j]—ﬁ
c—max{ c—fB

s+ o‘(a;, bj)
s < S7[j]
§7[j] e
Output S~ [n] as the score of an optimal alignment.
end

Fig. 3.16 Computation of the optimal score of aligning sequences of lengths m and n in linear
space O(n).

or, equivalently, the maximum score of a path from (0,0) to the cell (i, ) in the
alignment graph. By symmetry, the optimal score of aligning a;(ja;+>...4a,, and
bjs1bji2 ... by, or the maximum score of a path from (i, j) to (m,n) in the alignment
graph can be calculated in linear space in a backward manner. Figure 3.17 gives the
pseudo-code for computing the score of an optimal global alignment in a backward
manner in linear space.

In what follows, we use S™[i,j] and ST[i, j] to denote the maximum score of
a path from (0,0) to (i,j) and that from (i, /) to (m,n) in the alignment graph,
respectively. Without loss of generality, we assume that m is a power of 2. Obviously,
for each j, S™[m/2, j]+ S*[m/2, j] is the maximum score of a path from (0,0) to
(m,n) through (m/2, j) in the alignment graph. Choose j,;s such that

S {m/zajmid] +5* (m/2, jmid] = 121%151_ [m/2,j] +8* [m/2, j].

Then, S [m/2, jmia] +St[m/2, jmia] is the optimal alignment score of A and B and
there is a path having such a score from (0,0) to (m,n) through (m/2, juiq) in the
alignment graph.

Hirschberg’s linear-space approach is first to compute S~[m/2,j] for 1 < j<n
by a forward pass, stopping at row m/2 and to compute S*[m/2,j] for 1 < j<n
by a backward pass and then to find j,;4. After j,q is found, recursively compute
an optimal path from (0,0) to (m/2, jmiq) and an optimal path from (m/2, jyiqa) to
(m,n).

As the problem is partitioned further, there is a need to have an algorithm that
is capable of delivering an optimal path for any specified two ends. In Figure 3.18,
algorithm LINEAR_ALIGN is a recursive procedure that delivers a maximum-scoring
path from (i1, ji) to (i2, j2). To deliver the whole optimal alignment, the two ends
are initially specified as (0,0) and (m,n).
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Now let us analyze the time and space taken by Hirschberg’s approach. Using
the algorithms given in Figures 3.16 and 3.17, both the forward and backward pass
take O(nm/2)-time and O(n)-spaces. Hence, it takes O(mn)-time and O(n)-spaces
to find jiq. Set T = mn and call it the size of the problem of aligning A and B. At
each recursive step, a problem is divided into two subproblems. However, regardless
of where the optimal path crosses the middle row m/2, the total size of the two
resulting subproblems is exactly half the size of the problem that we have at the
recursive step (see Figure 3.19). It follows that the total size of all problems, at all
levels of recursion, is at most 7+ 7 /2+T /4 + - -- = 2T. Because computation time
is directly proportional to the problem size, Hirschberg’s approach will deliver an
optimal alignment using O(2T) = O(T) time. In other words, it yields an O(mn)-
time, O(n)-space global alignment algorithm.

Hirschberg’s original method, and the above discussion, apply to the case where
the penalty for a gap is merely proportional to the gap’s length, i.e., k x B for a k-
symbol gap. For applications in molecular biology, one wants penalties of the form
o +kx B, ie., each gap is assessed an additional “gap-open” penalty . Actually,
one can be slightly more general and substitute residue-dependent penalties for .
In Section 3.5.1, we have shown that the relevant alignment graph is more compli-
cated. Now at each grid point (i, j) there are three nodes, denoted (i, j)s, (i, j)p, and
(4, j)1, and generally seven entering edges, as pictured in Figure 3.14. The align-
ment problem is to compute a highest-score path from (0,0)s to (m,n)s. Fortu-
nately, Hirschberg’s strategy extends readily to this more general class of alignment
scores [150]. In essence, the main additional complication is that for each defining
corner of a subproblem, we need to specify one of the grid point’s three nodes.

Another issue is how to deliver an optimal local alignment in linear space. Recall
that in the local alignment problem, one seeks a highest-scoring alignment where
the end nodes can be arbitrary, i.e., they are not restricted to (0,0)g and (m,n)s. In
fact, it can be reduced to a global alignment problem by performing a linear-space

Algorithm BACKWARD_SCORE(A =ajay...ay, B="b1by...b,)
begin
S*t[n] «0
for j —n—1downtoOdoS*[j]—ST[j+1]-8
for i — m— 1 down to 0 do
s —S*n]
¢St -p
St[n) —c
for j — n— 1 down to O do
STj]-B
c—max{ c—f8
s+0(air1,bjt)
5 S*(j]
§t[j) ¢
Output S*[0] as the score of an optimal alignment.
end

Fig. 3.17 Backward computation of the score of an optimal global alignment in linear space.
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score-only pass over the dynamic-programming matrix to locate the first and last
nodes of an optimal local alignment, then delivering a global alignment between
these two nodes by applying Hirschberg’s approach.

Algorithm LINEAR_ALIGN(A = aja;...ay, B="b\b)...by,, i, Ji, i2, j2)
begin
ifij+1<iorj+1< j, then
| Output the aligned pairs for the maximum-score path from (i1,1) to (ia, j2)
else
imid L(ll +i2)/2J
// Find the maximum scores from (ij, ji )
S7[ji] <0
for j— ji+1to jpdoS[j] —S[j—1]-B
for i — i) +11to0 i,y do
s—S"[ji]
c—S"[ji]-B
S7[h] ¢
for j — ji+1to j, do
S7[]-8
c—max{ c—f3
S+G(ai,bj)
s —S7[j]
S7ljlc
/1 Find the maximum scores to (iz, j»)
Sl 0
for j — j—1ldownto j, do S*[j] —S*[j+1]-p
for i — iy — 1 down to i,y do

5 — 8% o]

c—S8*j]-B

St[j2] ¢

for j — j,— 1 down to j; do

S*j-B
c—max{ c—f8
s+0(ais1,bj41)
s~ S*]j]
S*jl e
// Find where maximum-score path crosses row Imid
Jmid < value j € [jy, j»] that maximizes S~ [;] +S*j]
LINEAR_ALIGN(A,B, iy, J1s bmids Jmid)
LINEAR_ALIGN(A,B, imid, jmid» 2, j2)
end

Fig. 3.18 Computation of an optimal global alignment in linear space.
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0 -

Fig. 3.19 Hirschberg’s linear-space approach.

3.7 Other Advanced Topics

In this section, we discuss several advanced topics such as constrained sequence
alignment, similar sequence alignment, suboptimal alignment, and robustness mea-
surement.

3.7.1 Constrained Sequence Alignment

Rigorous sequence alignment algorithms compare each residue of one sequence
to every residue of the other. This requires computational time proportional to the
product of the lengths of the given sequences. Biologically relevant sequence align-
ments, however, usually extend from the beginning of both sequences to the end
of both sequences, and thus the rigorous approach is unnecessarily time consum-
ing; significant sequence similarities are rarely found by aligning the end of one
sequence with the beginning of the other.

As a result of the biological constraint, it is frequently possible to calculate an
optimal alignment between two sequences by considering only those residues that
are within a diagonal band in which each row has only w cells. With sequences A =
aiay...ay and B = byb;...by, one can specify constants ¢ < u such that aligning
a; with b; is permitted only if £ < j—i < u. For example, it rarely takes a dozen
insertions or deletions to align any two members of the globin superfamily; thus, an
optimal alignment of two globin sequences can be calculated in O(nw) time that is
identical to the rigorous alignment that requires O(nm) time.

Alignment within a band is used in the final stage of the FASTA program for rapid
searching of protein and DNA sequence databases (Pearson and Lipman, 1988;
Pearson, 1990). For optimization in a band, the requirement to “start at the begin-
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ning, end at the end” is reflected in the £ < min{0,n — m} and u > max{0,n — m}
constraints. “Local” sequence alignments do not require that the beginning and end
of the alignment correspond to the beginning and end of the sequence, i.e., the
aligned sequences can be arbitrary substrings of the given sequences, A and B; they
simply require that the alignment have the highest similarity score. For a “local”
alignment in a band, it is natural to relax the requirement to £ < u. Algorithms for
computing an optimal local alignment can utilize a global alignment procedure to
perform subcomputations: once locally optimal substrings A" of A and B’ of B are
found, which can be done by any of several available methods, a global alignment
procedure is called to align A’ and B'. Appropriate values of ¢ and 1’ for the global
problem are inferred from the £ and u of the local problems. In other situations, a
method to find unconstrained local alignments, i.e., without band limits, might de-
termine appropriate values of £ and u before invoking a global alignment procedure
within a band.

Although the application of rigorous alignment algorithms to long sequences can
be quite time-consuming, it is often the space requirement that is limiting in practice.
Hirschberg’s approach, introduced in Section 3.6, can be easily modified to find a
solution locating in a band. Unfortunately, the resulting time required to produce
the alignment can exceed that of the score-only calculation by a substantial factor.
If T denotes the number of entries in the band of the dynamic programming matrix,
then T = O(nw). Producing an alignment involves computing as many as T x log, n
entries (including recomputations of entries evaluated at earlier steps). Thus, the
time to deliver an alignment exceeds that for computing its score in a band by a log
factor.

To avoid the log factor, we need a new way to subdivide the problem that limits
the subproblems to some fraction, o < 1, of the band. Figure 3.20 illustrates the idea.
The score-only backward pass is augmented so that at each point it computes the
next place where an optimal path crosses the mid-diagonal, i.e., diagonal (£+u)/2.
Using only linear space, we can save this information at every point on the “current
row” or on the mid-diagonal. When this pass is completed, we can use the retained
information to find the sequence of points where an optimal solution crosses the
mid-diagonal, which splits the problem into some number of subproblems. The total
area of these subproblems is no more than half of the original area for a narrow band
with widely spaced crossing points; in other cases it is even less.

It should be noted that this band-aligning algorithm could be considered as a
generalization of Hirschberg’s approach by rotating the matrix partition line. The
idea of partition line rotation has been exploited in devising parallel sequence com-
parison algorithms. Nevertheless, the dividing technique proposed in this section,
which produces more than two subproblems, reveals a new paradigm for space-
saving strategies.

Another extension is to consider the situations where the ith entry of the first
sequence can be aligned to the jth entry of the second sequence only if L[i] < j <
Uli], for given left and right bounds L and U. As in the band alignment problem,
we can apply the idea of defining a midpoint partition line that bisects the region
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Fig. 3.20 Dividing a band by its middle diagonal.

into two nearly equal parts. Here we introduce a more general approach that can be
easily utilized by other relevant problems.

Given a narrow region R with two boundary lines L and U, we can proceed as
follows. We assume that L and U are non-decreasing since if, e.g., L[i] were larger
than L[i + 1], we could set L[i + 1] to equal L[i] without affecting the set of con-
strained alignments. Enclose as many rows as possible from the top of the region in
an upright rectangle, subject to the condition that the rectangle’s area at most dou-
bles the area of its intersection with R. Then starting with the first row of R not in
the rectangle, we cover additional rows of R with a second such rectangle, and so
on.

A score-only backward pass is made over R, computing S*. Values of ST are
retained for the top line in every rectangle (the top rectangle can be skipped). It can
be shown that the total length of these pieces cannot exceed three times the total
number of columns, as required for a linear space bound. Next, perform a score-
only forward pass, stopping at the last row in the first rectangle. A sweep along
the boundary between the first and second rectangles locates a crossing edge on an
optimal path through R. That is, we can find a point p on the last row of the first
rectangle and a point ¢ on the first row of the second rectangle such that there is a
vertical or diagonal edge e from p to ¢, and e is on an optimal path. Such an optimal
path can be found by applying Hirschberg’s strategy to R’s intersection with the first
rectangle (omitting columns following p) and recursively computing a path from g
through the remainder of R. This process inspects a grid point at most once during
the backward pass, once in a forward pass computing p and ¢, and an average of
four times for applying Hirschberg’s method to R’s intersection with a rectangle.

3.7.2 Similar Sequence Alignment

If two sequences are very similar, more efficient algorithms can be devised to deliver
an optimal alignment for them. In this case, we know that the maximum-scoring
path in the alignment graph will not get too far away from the diagonal of the source
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(0,0). One way is to draw a constrained region to restrict the diversion and run the
constrained alignment algorithm introduced in Section 3.7.1. Another approach is
to grow the path greedily until the destination (m,n) is reached. For this approach,
instead of working with the maximization of the alignment score, we look for the
minimum-cost set of single-nucleotide changes (i.e., insertions, deletions, or substi-
tutions) that will convert one sequence to the other. Any match costs zero, which
allows us to have a free advance. As for penalty, we have to pay a certain amount of
cost to get across a mismatch or a gap symbol.

Now we briefly describe the approach based on the diagonalwise monotonicity of
the cost tables. The following cost function is employed. Each match costs 0, each
mismatch costs 1, and a gap of length k is penalized at the cost of k + 1. Adding 1
to a gap’s length to derive its cost decreases the likelihood of generating gaps that
are separated by only a few paired nucleotides. The edit graph for sequences A and
B is a directed graph with a vertex at each integer grid point (x,y), 0 < x < m and
0 <y <n.LetI(zc) denote the x value of the farthest point in diagonal z (=y — x)
that can be reached from the source (i.e., grid point (0,0)) with cost ¢ and that is
free to open an insertion gap. That is, the grid point can be (1) reached by a path of
cost ¢ that ends with an insertion, or (2) reached by any path of cost ¢ — 1 and the
gap-open penalty of 1 can be “paid in advance.” (The more traditional definition,
which considers only case (1), results in the storage of more vectors.) Let D(z,c)
denote the x value of the farthest point in diagonal z that can be reached from the
source with cost ¢ and is free to open a deletion gap. Let S(z, ¢) denote the x value of
the farthest point in diagonal z that can be reached from the source with cost c. With
proper initializations, these vectors can be computed by the following recurrence
relations:

I(z,¢) =max{l(z—1,c—1),8(z,c— 1)},

D(z,c) = max{D(z+ 1,c—1)+1,8(z,c— 1)},
S(z,c) = snake(z,max{S(z,c—1)+1,1(z,c),D(z,c)}),

where snake(z,x) = max{x,max{r:ayx...a;—1 =byi;...bi_14;:}}.

Since vectors at cost ¢ depend only on those at costs ¢ and ¢ — 1, it is straightfor-
ward to derive a dynamic-programming algorithm from the above recurrence rela-
tions.

3.7.3 Suboptimal Alignment

Molecular biology is rapidly becoming a data-rich science with extensive computa-
tional needs. More and more computer scientists are working together on developing
efficient software tools for molecular biologists. One major area of potential interac-
tion between computer scientists and molecular biologists arises from the need for
analyzing biological information. In particular, optimal alignments mentioned in
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previous sections have been used to reveal similarities among biological sequences,
to study gene regulation, and even to infer evolutionary trees.

However, biologically significant alignments are not necessarily mathematically
optimized. It has been shown that sometimes the neighborhood of an optimal align-
ment reveals additional interesting biological features. Besides, the most strongly
conserved regions can be effectively located by inspecting the range of variation of
suboptimal alignments. Although rigorous statistical analysis for the mean and vari-
ance of optimal global alignment scores is not yet available, suboptimal alignments
have been successfully used to informally estimate the significance of an optimal
alignment.

For most applications, it is impractical to enumerate all suboptimal alignments

since the number could be enormous. Therefore, a more compact representation of

all suboptimal alignments is indispensable. A 0-1 matrix can be used to indicate if
a pair of positions is in some suboptimal alignment or not. However, this approach
misses some connectivity information among those pairs of positions. An alternative
is to use a set of “canonical” suboptimal alignments to represent all suboptimal
alignments. The kernel of that representation is a minimal directed acyclic graph
(DAG) containing all suboptimal alignments.

Suppose we are given a threshold score that does not exceed the optimal align-
ment score. An alignment is suboptimal if its score is at least as large as the thresh-
old score. Here we briefly describe a linear-space method that finds all edges that
are contained in at least one path whose score exceeds a given threshold 7. Again, a
recursive subproblem will consist of applying the alignment algorithm over a rectan-
gular portion of the original dynamic-programming matrix, but now it is necessary
that we continue to work with values S~ and S* that are defined relative to the origi-
nal problem. To accomplish this, each problem to be solved is defined by specifying
values of S~ for nodes on the upper and left borders of the defining rectangle, and
values of S for the lower and right borders.

To divide a problem of this form, a forward pass propagates values of S~ to nodes
in the middle row and the middle column, and a backward pass propagates values
S* to those nodes. This information allows us to determine all edges starting in the
middle row or middle column that are contained in a path of score at least 7. The
data determining any one of the four subproblems, i.e., the arrays of S values on its
borders, is then at most half the size of the set of data defining the parent problem.
The maximum total space requirement is realized when recursion reaches a directly
solvable problem where there is only the leftmost cell of the first row of the original
grid left; at that time there are essentially 2(m + n) S-values saved for borders of
the original problem, m + n values on the middle row and column of the original
problem, (m+ n)/2 values for the upper left subproblem, (m +n)/4 values for the
upper-left-most subsubproblem, etc., giving a total of about 4(m + n) retained S-
values.
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3.7.4 Robustness Measurement

The utility of information about the reliability of different regions within an align-
ment is widely appreciated, see [192] for example. One approach to obtaining such
information is to determine suboptimal alignments, i.e., some or all alignments
that come within a specified tolerance of the optimum score, as discussed in Sec-
tion 3.7.3. However, the number of suboptimal alignments, or even alternative opti-
mal alignments, can easily be so large as to preclude an exhaustive enumeration.

Sequence conservation has proved to be a reliable indicator of at least one class of
regulatory elements. Specifically, regions of six or more consecutive nucleotides that
identical across a range of mammalian sequences, called “phylogenetic footprints,”
frequently correspond to binding sits for sequence-specific nuclear proteins. It is
also interesting to look for longer, imperfectly conserved (but stronger matching)
regions, which may indicate other sorts of regulatory elements, such as a region that
binds to a nuclear matrix or assumes some altered chromatin structure.

In the following, we briefly describe some interesting measurements of the ro-
bustness of each aligned pair of a pairwise alignment. The first method computes,
for each position i of the first sequence, the lower and upper limits of the positions
in the second sequence to which it can be aligned and still come within a specified
tolerance of the optimum alignment score. Delimiting suboptimal alignments this
way, rather than enumerating all of them, allows the computation to run in only a
small constant factor more time than the computation of a single optimal alignment.

Another method determines, for each aligned pair of an optimal alignment, the
amount by which the optimum score must be lowered before reaching an align-
ment not containing that pair. In other words, if the optimum alignment score is s
and the aligned pair is assigned the robustness-measuring number r, then any align-
ment scoring strictly greater than s — r aligns those two sequence positions, whereas
some alignment of score s — r does not align them. As a special case, this value

m

Fig. 3.21 The total number of the boundary entries in the active subproblems is O(m+n).
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tells whether the pair is in all optimal alignments (namely, the pair is in all opti-
mal alignments if and only if its associated value is non-zero). These computations
are performed using dynamic-programming methods that require only space pro-
portional to the sum of the two sequence lengths. It has also been shown on how to
efficiently handle the case where alignments are constrained so that each position,
say position i, of the first sequence can be aligned only to positions on a certain
range of the second sequence.

To deliver an optimal alignment, Hirschberg’s approach applies forward and
backward passes in the first nondegenerate rectangle along the optimal path be-
ing generated. Within a subproblem (i.e., rectangle) the scores of paths can be taken
relative to the “start node” at the rectangle’s upper left and the “end node” at the
rightmost cell of the last row. This means that a subproblem is completely specified
by giving the coordinates of those two nodes. In contrast, methods for the robust-
ness measurement must maintain more information about each pending subproblem.
Fortunately, it can be done in linear space by observing that the total number of the
boundary entries of all pending subproblems of Hirschberg’s approach is bounded
by O(m+n) (see Figure 3.21).

3.8 Bibliographic Notes and Further Reading

Sequence alignment is one of the most fundamental components of bioinformatics.
For more references and applications, see the books by Sankoff and Kruskal [175],
Waterman [197], Gusfield [85], Durbin et al. [61], Pevzner [165], Jones and
Pevzner [98], and Deonier et al. [58], or recent survey papers by Batzoglou [23]
and Notredame [154].

3.1
We compile a list of pairwise alignment tools in Table C.1 of Appendix C.
3.2

It is very easy to visualize in a dot-matrix representation certain sequence simi-
larities such as insertions, deletions, repeats, or inverted repeats.

3.3

The global alignment method was proposed by Needleman and Wunsch [151].
Such a dynamic-programming method was independently discovered by Wagner
and Fischer [194] and workers in other fields. For a survey of the history, see the
book by Sankoff and Kruskal [175].
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The local alignment method is so-called the Smith-Waterman algorithm [180]. In
most applications of pairwise alignment, affine gap penalties are used [78].

3.5

Biologists need more general measurements of sequence relatedness than are
typically considered by computer scientists. The most popular formulation in the
computer science literature is the “longest common subsequence problem,” which is
equivalent to scoring alignments by simply counting the number of exact matches.
For comparing protein sequences, it is important to reward alignment of residues
that are similar in functions [70].

For both DNA and protein sequences, it is standard to penalize a long “gap,” i.e.,
a block of consecutive dashes, less than the sum of the penalties for the individual
dashes in the gap. In reality, a gap would most likely represent a single insertion or
deletion of a block of letters rather than multiple insertions or deletions of single
letters [71]. This is usually accomplished by charging a +k x B for a gap of length
k. Thus the “gap-open penalty” « is assessed for every gap, regardless of length,
and an additional “gap-extension penalty” 8 is charged for every dash in the gap.
Such penalties are called affine gap penalties. Gotoh [78] showed how to efficiently
compute optimal alignments under such a scoring scheme.

Even more general models for quantifying sequence relatedness have been pro-
posed. For example, it is sometimes useful to let the penalty for adding a symbol
to a gap depend on the position of the gap within the sequence [81], which is mo-
tivated by the observation that insertions in certain regions of a protein sequence
can be much more likely than at other regions. Another generalization is to let the
incremental gap score §; = ¢;1] — ¢;, where a k-symbol gap scores ¢, be a monotone
function of i, e.g., 8y > &y > --- [139, 196].

Gotoh [79] proposed the piecewise linear gap penalties to allow long gaps in a
resulting alignment. Huang and Chao [93] generalized the global alignment algo-
rithms to compare sequences with intermittent similarities, an ordered list of similar
regions separated by different regions.

Most alignment methods can be extended to deal with free end gaps in a straight-
forward way.

3.6
Readers can refer to [40, 41, 43] for more space-saving strategies.
3.7

Readers should also be aware that the hidden Markov models are a probabilistic
approach to sequence comparison. They have been widely used in the bioinformat-
ics community [61]. Given an observed sequence, the Viterbi algorithm computes
the most probable state path. The forward algorithm computes the probability that
a given observed sequence is generated by the model, whereas the backward al-
gorithm computes the probability that a given observed symbol was generated by
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a given state. The book by Durbin et al. [61] is a terrific reference book for this
paradigm.

Alignment of two genomic sequences poses problems not well addressed by ear-
lier alignment programs.

PipMaker [178] is a software tool for comparing two long DNA sequences to
identify conserved segments and for producing informative, high-resolution dis-
plays of the resulting alignments. It displays a percent identity plot (pip), which
shows both the position in one sequence and the degree of similarity for each
aligning segment between the two sequences in a compact and easily understand-
able form. The alignment program used by the PipMaker network server is called
BLASTZ [177]. It is an independent implementation of the Gapped BLAST algo-
rithm specifically designed for aligning two long genomic sequences. Several mod-
ifications have been made to BLASTZ to attain efficiency adequate for aligning
entire mammalian genomes and to increase the sensitivity.

MUMmer [119] is a system for aligning entire genomes rapidly. The core of the
MUMmer algorithm is a suffix tree data structure, which can be built and searched
in linear time and which occupies only linear space. DisplayMUMs 1.0 graphically
presents alignments of MUMs from a set of query sequences and a single reference
sequence. Users can navigate MUM alignments to visually analyze coverage, tiling
patterns, and discontinuities due to misassemblies or SNPs.

The analysis of genome rearrangements is another exciting field for whole
genome comparison. It looks for a series of genome rearrangements that would
transform one genome into another. It was pioneered by Dobzhansky and Sturte-
vant [60] in 1938. Recent milestone advances include the works by Bafna and
Pevzner [19], Hannenhalli and Pevzner [86], and Pevzner and Tesler [166].

Chapter 4
Homology Search Tools

The alignment methods introduced in Chapter 3 are good for comparing two
sequences accurately. However, they are not adequate for homology search against
a large biological database such as GenBank. As of February 2008, there are ap-
proximately 85,759,586,764 bases in 82,853,685 sequence records in the traditional
GenBank divisions. To search such kind of huge databases, faster methods are re-
quired for identifying the homology between the query sequence and the database
sequence in a timely manner.

One common feature of homology search programs is the filtration idea, which
uses exact matches or approximate matches between the query sequence and the
database sequence as a basis to judge if the homology between the two sequences
passes the desired threshold.

This chapter is divided into six sections. Section 4.1 describes how to implement
the filtration idea for finding exact word matches between two sequences by using
efficient data structures such as hash tables, suffix trees, and suffix arrays.

FASTA was the first popular homology search tool, and its file format is still
widely used. Section 4.2 briefly describes a multi-step approach used by FASTA for
finding local alignments.

BLAST is the most popular homology search tool now. Section 4.3 reviews the
first version of BLAST, Ungapped BLAST, which generates ungapped alignments.
It then reviews two major products of BLAST 2.0: Gapped BLAST and Position-
Specific Iterated BLAST (PSI-BLAST). Gapped BLAST produces gapped align-
ments, yet it is able to run faster than the original one. PSI-BLAST can be used
to find distant relatives of a protein based on the profiles derived from the multi-
ple alignments of the highest scoring database sequence segments with the query
segment in iterative Gapped BLAST searches.

Section 4.4 describes BLAT, short for “BLAST-like alignment tool.” It is of-
ten used to search for the database sequences that are closely related to the query
sequences such as producing mRNA/DNA alignments and comparing vertebrate se-
quences.

PatternHunter, introduced in Section 4.5, is more sensitive than BLAST when
a hit contains the same number of matches. A novel idea in PatternHunter is the





