
13 Comparative RNA Analysis

De novo folding approaches alone are not so successful. In case additional homologous sequences are at hand,
we can try a comparative approach. Basically, there are three ways:

1. Plan A: Align the sequences and look for common structural elements in the alignment.

2. Plan B: Simultaneous folding and aligning

3. Plan C: Fold each sequence and align the structures.

For each of these ways, we will discuss some aspects and give an overview of the different methods used in
practice.

Given just a sequence, de novo foldings algorithms as, e.g., Nussinov and Zuker, compute a secondary
structure.

Problems with de novo folding:

• Often wrong (too simplistic models, too many parameters, . . .)

• Lots of optimal structures (and even more suboptimal ones)

Suboptimal structures

“There is an embarrassing abundance of structures having a free

energy near that of the optimum.” (McCaskill 1990)

!5 0 5 10 15 20 25 30 35

!22

!21.8

!21.6

!21.4

!21.2

!21

!20.8

!20.6

!20.4

!20.2

!20

d
BP

(S
i
,S

mfe
)

!
 G

 (
k
c
a

l/
m

o
l)

G
C
G
G
A
U
U
U

A
G

CU
C
A

G U
U
G
G
G

A
G
A
G
C
G
C

C
A

G
A
C
U

G
A
A
G

A U U
U
G

G
AG

G
U
C

C
U

G
U
G
U
U
C
G
A

U
C
C
A
C

A
G
A
A
U
U
C
G
C

A

G
C
G
G
A
UUU

A
GCUC

AGU
U
G

G G A
G A G C

G
C
C
A
G
A
C

U
G A

A
GA
U
U
U
G
GAGG

U
C
C U G U G

U U
C
G

AUC
CACAG

A
A
U
U
C
G
C

A

G
C
G
G
A
U
U
UA

G
C
UCAGUUG

GGAG
A
G C G

C C A
G A C U G A

AGAU
U
U G

G A
G G U C

C
U G

U
G

U
UC

GAUC
CA

CA
G
A
A
U
U
C
G
C

A

Biological

Suboptimal

MFE

Wuchty et al. (1999) Complete suboptimal folding of RNA and the stability of secondary
structures, Biopolymers.

RNA structure analysis

[Source: lec-

ture by Paul Gardner]

A little help: base pair probabilities (McCaskill, 1990).

Structure prediction: McCaskill

Boltzmann weighted sum

Q =
∑

Si∈S

exp−
∆GSi

RT

P (Si) =
exp−

∆GSi
RT

Q

yeast_trna_P

GC G G A U U U A G C U C A G U U G G G A G A G C G C C A G A C U G A A G A U U U G G A G G U C C U G U G U U C G A U C C A C A G A A U U C G C A

G C G G A U U U A G C U C A G U U G G G A G A G C G C C A G A C U G A A G A U U U G G A G G U C C U G U G U U C G A U C C A C A G A A U U C G C A

G
C
G
G
A
U
U
U
A
G
C
U
C
A
G
U
U
G
G
G
A
G
A
G
C
G
C
C
A
G
A
C
U
G
A
A
G
A
U
U
U
G
G
A
G
G
U
C
C
U
G
U
G
U
U
C
G
A
U
C
C
A
C
A
G
A
A
U
U
C
G
C
A

G
C
G
G
A
U
U
U
A
G
C
U
C
A
G
U
U
G
G
G
A
G
A
G
C
G
C
C
A
G
A
C
U
G
A
A
G
A
U
U
U
G
G
A
G
G
U
C
C
U
G
U
G
U
U
C
G
A
U
C
C
A
C
A
G
A
A
U
U
C
G
C
A

McCaskill (1990) The equilibrium partition function and base pair binding probabilities for RNA

secondary structures, Biopolymers.

RNA structure analysis

Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36 8017

But which structure is it?

More help: use biological knowledge (conservation of structure)
→ comparative approach

Structure is conserved although sequence is not!
!"#$%"$#&'()'*+,)&#-&./'01"2+$32'!&4$&,%&'()'5+"6

7
*
7
0
*
*
77

7

7*87
7*8

8
7
7
8 0 0

8 7 7 8

0

*
8
*
*
*
*
8
78 *

0
*
7
7
7
0
7 07

0
0
8
7 8 7 7 7

8 8
*
0
0

08
***08

*
7
7
8
*
7
*

7
*
*
0

9:

;:

8
*
*
7
8
*
78

0
78*8

077
$
7
7
$ 8 0

7 7 0 8

0
*
8
*
7
7
*
8
* 8 *

0
*
*
*
7
0
7 0

7
0
*
* * 7 7 7

8 8
*
7
<

78
***77

*
7
0
*
7
7
0
0
*
*
0

9:

;:
=>?@A? =BACDE

RD0260 GCGACCGGGGCUGGCUUGGUAAUGGUACUCCCCUGUCACGGGAGAGAAUGUGGGUUCAAAUCCCAUCGGUCGCGCCA

RE6781 UCCGUCGUAGUCUAGGUGGUUAGGAUACUCGGCUCUCACCCGAGAGAC-CCGGGUUCGAGUCCCGGCGACGGAACCA

^^^^^^^ ^^^^ ^^^^ ^^^^^ ^^^^^ ^^^^^ ^^^^^^^^^^^^

[Source: lec-

ture by David Mathews]

13.1 Comparative RNA Analysis

• Input: set of sequences with assumed structural similarities

• Output: common structural elements, alignment, and phylogeny

Comparative sequence analysis

Input: a set of sequences with the same biological function which

are assumed to have approximately the same structure.

Output: the common structural elements, aligned sequences and

a phylogeny which best explains the observed data.

2

4

5

3

1

>1
GCAUCCAUGGCUGAAUGGUUAAAGCGCCCAACUCAUAAUUGGCGAACUCGCGGGUUCAAUUCCUGCUGGAUGCA
>2
GCAUUGGUGGUUCAGUGGUAGAAUUCUCGCCUGCCACGCGGGAGGCCCGGGUUCGAUUCCCGGCCAAUGCA
>3
UGGGCUAUGGUGUAAUUGGCAGCACGACUGAUUCUGGUUCAGUUAGUCUAGGUUCGAGUCCUGGUAGCCCAG
>4
GAAGAUCGUCGUCUCCGGUGAGGCGGCUGGACUUCAAAUCCAGUUGGGGCCGCCAGCGGUCCCGGGCAGGUUCGACUCCUGUGAUCUUCCG
>5
CUAAAUAUAUUUCAAUGGUUAGCAAAAUACGCUUGUGGUGCGUUAAAUCUAAGUUCGAUUCUUAGUAUUUACC

 ** *
 1 GCAUCCAUGGCUGAAU-GGUU-AAAGCGCCCAACUCAUAAUUGGCGAA--
 2 GCAUUGGUGGUUCAGU-GGU--AGAAUUCUCGCCUGCCACGCGG-GAG--
 3 UGGGCUAUGGUGUAAUUGGC--AGCACGACUGAUUCUGGUUCAG-UUA--
 4 GAAGAUCGUCGUCUCC-GGUG-AGGCGGCUGGACUUCAAAUCCA-GU-UG
 5 CUAAAUAUAUUUCAAU-GGUUAGCAAAAUACGCUUGUGGUGCGU-UAA--

 **** * **
 1 ------------------CUCGCGGGUUCAAUUCCUGCUGGAUGC-A
 2 ------------------G-CCCGGGUUCGAUUCCCGGCCAAUGC-A
 3 ------------------G-UCUAGGUUCGAGUCCUGGUAGCCCA-G
 4 GGGCCGCCAGCGGUCCCG--GGCAGGUUCGACUCCUGUGAUCUUCCG
 5 ------------------A-UCUAAGUUCGAUUCUUAGUAUUUAC-C

S

M

A

D

M

Y

M
UR

S
Y

U
C

A
M

Y-
G
G
Y
u a A

V MMM

R M
H

C
R

MY
U
S
H V R

H
K
C
V
R
c
K
W
A
-
-
-
-
- c c - c

c
a
-
c
-
-
-
c
c

c
-V-YS Y

R R
G
U U

C
R

AY
U
CCYRS

Y
M
D
M
Y
V
M
c

V

RNA structure analysis

[Source:

lecture by Paul Gardner]

8018 Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36

compute or get
sequence alignment
(ProAlign, clustalW, MAFFT,
genome browser, . . .)

UGCAGCGACGGAAACGCUGCUAGCUUUGCGGCUAAGACUCUCGA

CGUGCCGAAAUGGCCGGGGCUCCACCGAGGAUGAUGC

ACGAUGAUGAUCGAUCGAUCGGACGUAGCUGACUAGCUGACU

Homologous RNA sequences

fold/analyze alignment
(structure logos, pfold,
RNAalifold, ILM, . . .)

compute
sequence-structure
alignment
(Sankoff-based: FoldAlign,
DynAlign, Carnac, PMcomp, . . .
Other: T-Lara)

fold sequences
(crystallography/NMR, MFE
approaches (mfold, rnafold))

compute alignment of
fixed structures
(RNAforester, MARNA, . . .)

Alignment of RNA sequences
UGCAGCGACGGAAACG--CUGC----UAGCUUUGCGGCUAAGACUCUCGA

.((((((.......))--))))----(((((....)))))..........

ACGAUGAU-GAUCGAUCGAUCGGACGUAGCUGACUAGCUGA---CU----

.(((((((-.....))).))))....(((((....))))).---..----

-CGUGCC--GAAAUGG--CCGG----GGCUCCACCGAGGAUGAUGC----

-((.(((--.....))--))).----...(((.....)))......----

Fig. according to Gardner & Giegerich, BMC
Bioinformatics 2004, 5:140

Plan A

Plan B

Plan C

Plan A: First align, then fold

Plan B: Simultaneously align and fold

Plan C: First fold, then align.

Main problem of comparative approach:

Circular dependency of alignment and structures!

We need an accurate multiple alignment to get good structures and we need accurate structures to get a
good alignment!

13 Plan A

13 Fold/Analyze Alignments

13.1 Plan A: Fold/Analyze Alignments

Derive consensus structure by

• analyzing mutual information content

• folding the alignment with stochastic context free grammars (SCFG)

– extension of Hidden Markov Models

– pfold, for instance, predicts most probable consensus structure of an alignment

• folding the alignment with RNAalifold

– combines covariation with base-pairing energies

– predicts consensus fold for alignment

Although energy minimization techniques are attractive, almost all trusted RNA secondary structures
to date were determined using comparative analysis. However, comparative methods require many diverse
sequences and highly accurate multiple alignments to work well.

Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36 8019

The key idea is to identify the interactions (i.e., the Watson-Crick correlated positions that result from
compensatory mutations) in a multiple alignment, e.g.:

seq1 GCCUUCGGGC
seq2 GACUUCGGUC
seq3 GGCUUCGGCC

The amount of correlation of two columns of a multiple alignment can be computed as the mutual infor-
mation content measure:

“if you tell me the identity of position i, how much does this reduce the uncertainty about about
the identity of position j?”

13.2 Plan A: Mutual information content

A method used to locate covariant positions in a multiple sequence alignment is the mutual information content
of two columns.

First, for each column i of the alignment, the frequency fi(x) of each base x ∈ {A, C, G, U} is calculated.

Second, the 16 joint frequencies fi j(x, y) of two nucleotides, x in column i and y in column j, are calculated.

If the base frequencies of any two columns i and j are independent of each other, then

fi j(x, y)
fi(x) · f j(y)

≈ 1

If these frequencies are correlated, then this ratio will be greater than 1.

To calculate the mutual information content H(i, j) in bits between the two columns i and j, the logarithm of
this ratio is calculated and summed over all possible 16 base-pair combinations:

Hi j =
∑
xy

fi j(x, y) log2

fi j(x, y)
fi(x) f j(y)

.

This measure is maximum at 2 bits, representing perfect correlation.

If either site is conserved, there is less mutual information: for example, if all bases at site i are A, then the
mutual information is 0, even if site j is always U, because there is no covariance.

Examples of how to compute the mutual information content:

1 2 3 4 5 6 7 8

C G C G A U A A

C G G C C G C C

C G C G G C G G

C G G C U A U U

Compute:

H12 =
H34 =
H56 =
H78 =

The above example illustrates that the mutual information as given in the above formula is a general
concept that not only captures the correlation between Watson crick pairs (columns 5 and 6), but also others
(columns 7 and 8).

Example.

8020 Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36

N N’
N N’

N N’

N N’

N N’

R
N N’
N N’

A A
N Y

N
N

5’

3’

consensus binding site for R17 phage
coat protein
[source: Durbin, Eddy, Krogh, Mitchison: Bio-
logical sequence analysis]

N ∈ {A,C,G,U}, Y ∈ {C,U}, R ∈ {A,G}

Let’s first consider the purely sequence-based information content of the consensus:

• Information conytibuted by completely conserved base (the two As) is
∑

x px log2
px

fx
= 2 bits assuming

fx = 0.25 for all x ∈ N.

• Contribution of R (or Y):
∑

x px log2
px

fx
=

(
1
2 log2

1
2
1
4

)
· 2 = 1 bit.

• Contribution of N: 0 bits.

Thus, the consensus 6 bits of sequence-based information. We therefore expect to find a match every 26 = 64
nucleotides in random sequence, which is quite often.

Now, let’s add the structural information from the base pairs:

• Contribution of NṄ′ pair:
∑

x
∑

y pxy log2
pxy

fxy
= 4 · 1

4 log2

1
4
1

16
= 2 bits.

Including structure, the consensus conveys 20 bits of information, and we expect matches only every
220 ≈ 106 bases.

Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36 8021

[Source: R. Durbin, S. Eddy, A. Krogh und G. Mitchison, Biological sequence analysis, Cambridge, 1998.]

If we are only interested in the correlation of Watson crick pairs, Gorodkin suggested a slight modification
to the above measure. In addition he proposed a method to display this information as a sequence-structure
logo.

Recall, that for primary sequences over the alphabet Σ̂ = {A,C,G,U,−} the information content of position
i of an alignment is:

Ii =
∑
k∈Σ̂

Iik =
∑
k∈Σ̂

qik log2
qik

pk

where qik is the fraction of ‘base’ k at position i. For k , ’-’ we interpret pk as the a priori distribution of the bases
for that genome. (This is an extension of the Schneider logos proposed by Hertz and Stormo).

Having determined Ii for a position, there are two common ways to display the height dik for each letter:

1. dik = qik · Ii (type 1 logo), the height is proportional to the frequency.

2. dik =
qik/pk∑
l

qil/pl
· Ii (type 2 logo), the height is in proportion to the frequencies relative to the expected

frequencies.

Example.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C A A C A G C A G A A G A A U

C A C G A C G A C C A A C A G

C A G C A C C A G G A C G A C

C A U G A G G A C U A U U A A

8022 Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36

(pA, pC, pG, pU) = (0.25, 0.25, 0.25, 0.25) (0.4, 0.4, 0.1, 0.1)

type 1
0

1

2

bi
ts |

1

 a

C
2

 .

A
3

 a

4

 b

C
G

5

 .

A
6

 b

C
G

7

 c

C
G

8

 .

A

9

 c

C
G

10

 d

11

 .

A

12

 d

13

 e

14

 .

A

15

 e

|
0

1

bi
ts |

1

 a

C

2

 .

A

3

 a

CG
U

A

4

 b

C
G

5

 .

A

6

 b

C
G

7

 c

C
G

8

 .

A

9

 c

C
G

10

 d

CG
U

A

11

 .

A

12

 d

CG
U

A

13

 e

CG
U

A

14

 .

A

15

 e

CG
U

A|

type 2
0

1

2

bi
ts |

1

 a

C
2

 .

A
3

 a

4

 b

C
G

5
 .

A
6

 b

C
G

7
 c

C
G

8

 .

A
9

 c

C
G

10

 d

11

 .

A
12

 d

13

 e

14

 .

A
15

 e

|
0

1

bi
ts |

1

 a

C

2

 .

A

3

 a

C
AU

G

4

 b

C
G

5

 .

A

6

 b

C
G

7

 c

C
G

8

 .

A

9

 c

C
G

10

 d

C
AU

G

11

 .

A

12

 d

C
AU

G

13

 e

C
AU

G

14

 .

A

15

 e

C
AU

G|
Gorodkin proposed now the following: Define q̃i j to be the fraction of sequences that have complementary

base pairs at positions i and j. Then the expected value of q̃i j is

E(q̃i j) =
∑

(k,l)∈Σ×Σ

Ckl · qik · q jl ,

where Ckl is a symmetrical matrix with Ckl = 1 if the base pairs k and l are complementary and 0 otherwise.

Then he defines the mutual information as the log likelihood ratio of the observed to expected frequency
of complementary bases (Kullback-Leibler distance between two distributions), namely:

Mi j = q̃i j log2

q̃i j

E(q̃i j)
+ (1 − q̃i j) log2

1 − q̃i j

1 − E(q̃i j)
.

The mutual information between two positions is symmetrical. Hence we define Mi = M j = Mi j/2 and
display the amount in the sequence logo as an ’M’.

Consider again the alignment:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C A A C A G C A G A A G A A U

C A C G A C G A C C A A C A G

C A G C A C C A G G A C G A C

C A U G A G G A C U A U U A A

This results in the following logo:

Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36 8023

0

1

2

bi
ts |

1

 a

C
2

 .

A
3

 a

4

 b

C
G

5

 .

A
6

 b

C
G

7

 c

C
G
M

8

 .

A
9

 c

C
G
M

10

 d

11

 .

A
12

 d

13

 e

14

 .

A

15

 e

|
13.3 Plan A: RNA analysis with stochastic context free grammars

In this lecture we will introduce stochastic context-free grammars, or short: SCFGs.

In a sense, SCFGs are for RNA sequences with their long range interactions the same as HMMs are for
primary sequence analysis. Given an RNA alignment, we can design a suitable model based on covariance of
the sequence positions and a SCFG to decide whether a given RNA sequence fits to the model induced by the
RNA alignment.

Does it make sense to use probabilities of sentences? Noam Chomsky, the famed linguist actually thought
not.

The notion “probability of a sentence” is an entirely useless one, under any interpretation of this term.
Noam Chomsky

However, there are other opinions, like that of Fred Jelinek (former head of the IBM speech recognition
group)

Every time I fire a linguist, the performance of the recognizer improves.
Fred Jelinek

We start now with a little background about the language hierarchy that can be to a large extent attributed
to Noam Chomsky.

13.4 Transformational grammars

Transformational grammars were introduced by Noam Chomsky. He was interested to formalize how one can
enumerate all possible sentences contained in a (natural) language.

Transformational grammars are sometimes called generative grammars, that means they are able to generate
a sentence or a string that belongs to the language they encode.

Formally a grammar consists of a set of abstract non-terminal symbols like {S}, a set of rewriting rules {α→ β},
like (S→ aS, S→ bS, and S→ ε) (also called productions), and a set of terminal symbols that appear actually in
a word of the language, like {a, b}.

To generate a string of as and bs we carry out a series of transformations beginning from some string. By
convention we usually start from a special start symbol S. Then an applicable production is chosen which has
S on its left-hand side and S is then replaced by the string on the right-hand side of the production.

The succession of strings that results from this process is called a derivation from the grammar. An example
of the derivation in our example is S⇒ aS⇒ abS⇒ abbS⇒ abb.

Chomsky described four sorts of restrictions on a grammar’s rewriting rules. The resulting four classes of
grammars form a hierarchy known as the Chomsky hierarchy. In what follows we use capital letters A,B,W,S, . . .

8024 Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36

to denote nonterminal symbols, small letters a, b, c, . . . to denote terminal symbols and Greek letters α, β, γ, . . .
to represent a string of terminal and non-terminal letters.

1. Regular grammars. Only production rules of the form W → aW or W → a are allowed.

2. Context-free grammars. Any production of the form W → α is allowed.

3. Context-sensitive grammars. Productions of the form α1Wα2 → α1βα2 are allowed.

4. Unrestricted grammars. Any production rule of the form α1Wα2 → γ is allowed.

These four classes are nested. That means a regular grammar is always also a context-free grammar and
so on.

regular

context-free

context-sensitive

unrestricted

Each type of grammar has a corresponding abstract computational device associated with it, which can
parse a given sequence and accept it if it belongs to the language, or reject it otherwise.

The corresponding machines for the Chomsky hierarchy are as follows.

1. Regular grammars: Finite state automaton.

2. Context-free grammars: Push-down automaton.

3. Context-sensitive grammars: Linear bounded automaton (a Turing machine with a tape of linear size).

4. Unrestricted grammars: Turing machine.

For example the FMR-1 gene1 sequence contains a triplet repeat region in which the sequence cgg is
repeated a number of times (or, as a variant agg). This can be modelled by a regular grammar, and the following
finite state automaton accepts all strings starting with a gcg, containing a variable number of cgg repeats, and
ending with ctg.

S 1 2 3 4 5

678ǫ

g c g c g

gac

ctg
1The FMR-1 gene (“fragile site mental retardation 1 gene”) is involved in the fragile X syndrome, the most frequent form of inherited

mental retardation.

Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36 8025

13.5 Context-free grammars

From now on we will only deal with context-free grammars, since with them we can conveniently model RNA
sequences and their interactions. Hence it is worthwhile to write down the exact definition of a CFG.

Definition 1. A context free grammar G is a 4-tuple G = (N,T,P,S) with N and T being alphabets with N∩T = ∅.

• N is the nonterminal alphabet.

• T is the terminal alphabet.

• S ∈ N is the start symbol.

• P ⊆ N × (N ∪ T)∗ is the finite set of all productions.

Consider the context-free grammar

G =
(
{S}, {a, b}, {S→ aSa | bSb | aa | bb}, S

)
.

This CFG produces the language of all palindromes of the form

ααR with α = {a, b}∗ .

For example the string aabaabaa can be generated using the following derivation:

S⇒ aSa⇒ aaSaa⇒ aabSbaa⇒ aabaabaa.

The “palindrome grammar” can be readily extended to handle RNA hairpin loops. For example, we could
model hairpin loops with three base pairs and a gcaa or gaaa loop using the following productions.

S→ aW1u | cW1g | gW1c | uW1a,
W1 → aW2u | cW2g | gW2c | uW2a,
W2 → aW3u | cW3g | gW3c | uW3a,
W3 → gaaa | gcaa.

(We don’t mention the alphabets N and T explicitly if they are clear from the context.)

There is an elegant representation for derivations of a sequence in a CFG called the parse tree. The root of
the tree is the nonterminal S. The leaves are the terminal symbols, and the inner nodes are nonterminals.

For example if we extend the above productions with S→ SS we can get the following:

a g gc a a a c u g g g u g c a a a c c

W3

W2

W1

S

W3

W2

W1

S

S

Using a pushdown automaton we can parse a sequence left to right according to the following algorithm.

The automaton’s stack is initialized with the start symbol. Then the following steps are iterated until no
symbols remain. If the stack is empty when no input symbols remain, then the sequence has been successfully
parsed.

8026 Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36

1. Pop a symbol off the stack.

2. If the popped symbol is a non-terminal: Peek ahead in the input and choose a valid production for the
symbol. (For deterministic PDAs, there is at most one choice. For non-deterministic PDAs, all possible
choices need to be evaluated individually.) If there is no valid transition, terminate and reject.

Push the right side of the production on the stack, rightmost symbols first.

3. If the popped symbol is a terminal: Compare it to the current symbol of the input. If it matches, move
the automaton to the right on the input. If not, reject and terminate.

Example. (The current symbol is written using a capital letter):

Input string Stack Operation

Gccgcaaggc S Pop S. Produce S->gW1c

Gccgcaaggc gW1c Pop g. Accept g. Move right on input.

gCcgcaaggc W1c Pop W1. Produce W1->cW2g

gCcgcaaggc cW2gc Pop c. Accept c. Move right on input.

gcCgcaaggc W2gc Pop W2. Produce W2->cW3g

gcCgcaaggc cW3ggc Pop c. Accept c. Move right on input.

gccGcaaggc W3ggc Pop W3. Produce W3->gcaa

gccGcaaggc gcaaggc Pop g. Accept g. Move right on input.

... ... (several acceptances)

gccgcaaggC c Pop c. Accept c. Move right on input.

gccgcaaggc$ - Stack empty, input string empty. Accept!

13.6 Stochastic context-free grammars

Using CFGs we not only want to define rigid patterns like in the above example, rather we want to derive a
consensus pattern and

• allow approximate matches

• weight the matches somehow,

so that we can learn the weights. Similar to a Markov model we now assign probabilities to productions. This
could then be used for example to compute the most probable derivation of a sequence.

Definition 2. A stochastic context free grammar G is a 5-tuple G = (N,T,P,S, ρ) where:

• (N,T,P,S) is a CFG

• ρ : P→ [0, 1]

• Each production p ∈ P has a probability ρ(p) with∑
A→α∈P

ρ(A→ α) = 1 ∀A ∈ N

The probability of a derivation is the product of the probabilities of the individual productions.

Defining the SCFG would be only the first step in creating a useful probabilistic modelling system for a
sequence analysis problem. Similar to HMMs we must address the following three problems:

1. Calculate an optimal alignment of a sequence to a SCFG: the alignment problem.

2. Calculate the probability of a sequence given a SCFG: the scoring problem.

3. Given a set of RNA sequences, estimate the optimal probability parameters for the SCFG: the training
problem.

Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36 8027

13.7 Chomsky normal form

In order to formulate algorithms for SCFGs it is very useful to choose a normalized form for the productions.
One such form is the Chomsky normal form or CNF. This form requires that all CFG productions are of the form
W →WyWz or W → a.

Any CFG can be cast into CNF by expanding any non-conforming rules into a series of allowed productions,
with the help of additional nonterminals. For example the rule S → aSb could be expanded to S → W1W2,
W1 → a, W2 → SW3, W3 → b.

13.8 Inside and outside algorithms

Now we will formulate the inside and the outside algorithm which are the natural counterparts for SCFGs of
the forward and backward algorithms for HMMs. Similarly, the Cocke-Younger-Kasami (CYK) algorithm is the
equivalent of the Viterbi algorithm and only a variant of the inside algorithm.

The SCFG algorithms also use dynamic programming but they are computationally more expensive than
the HMM counterparts. Later we will see that for RNA models we can speed up the algorithms.

• Denote the M different nonterminals as W1, . . . ,WM, with W1 being the start terminal. The SCFG must be
in CNF with productions

– Wv →WyWz (with transition probability tv(y, z)) and

– Wv → a (with emission probability ev(a)).

• The sequence of terminal symbols is denoted as x1, . . . , xL.

• The inside algorithm computes the array of values α(i, j, v), which is defined as the probability of a parse
subtree rooted at nonterminal Wv for the subsequence xi, . . . , x j.

Hence the probability we are interested in is P(x | θ) = α(1,L, 1).

1 i k k + 1 j L

y z

v

The above figure illustrates one step of the inside algorithm. The probability α(i, j, v) of the subtree rooted
at v for subsequence xi . . . x j is computed recursively by summing the probabilities of smaller trees, more
precisely,

α(i, j, v) =

M∑
y=1

M∑
z=1

j−1∑
k=i

α(i, k, y) α(k + 1, j, z) tv(y, z) .

• The outside algorithm computes the array of values β(i, j, v), which is defined as the summed probability
of all parse trees rooted at the start nonterminal for the complete sequence x1, . . . , xL, excluding all parse
subtrees for the subsequence xi, . . . , x j rooted at nonterminal Wv for all i, j, and v.

• Hence P(x | θ) =

M∑
v=1

β(i, i, v)ev(xi) for any i.

• The computation starts from the largest excluded subsequence and recursively works its way inwards.

8028 Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36

Inside(G, x);

(1) for i = 1 to L
(2) for v = 1 to M do α(i, i, v) = ev(xi) od;
(3) od
(4) for ` = 1 to L − 1 do
(5) for i = 1 to L − l do
(6) j = i + `;
(7) for v = 1 to M do

(8) α(i, j, v) =

M∑
y=1

M∑
z=1

j−1∑
k=i

α(i, k, y) α(k + 1, j, z) tv(y, z)

(9) od
(10) od
(11) od

1 k i− 1 i j L

z v

y

S

The above figure illustrates one step of the outside algorithm. The probability β(i, j, v) is the summed
probability of all parse trees excluding subtrees rooted at v that generate subsequence xi . . . x j. The top-down
calculation chooses a symbol y from which v was (supposedly) produced.

The case shown here contributes a probability α(k, i − 1, z)β(k, j, y)ty(z, v) to the sum, for each k < i. The
symmetric cases with k > j (not shown) contribute α(j + 1, k, z)β(i, k, y)ty(v, z) each. And we have to sum this
up over all choices of y and z.

Outside(G, x, α);

(1) β(1,L, 1) = 1;
(2) β(1,L, v) = 0, for v = 2, . . . ,M;
(3) for ` = L − 2 to 1 do
(4) for i = 1 to L − ` do
(5) j = i + `;
(6) for v = 1 to M do

(7) β(i, j, v) =
∑
y,z

i−1∑
k=1

α(k, i − 1, z) β(k, j, y) ty(z, v) +

(8)
∑
y,z

L∑
k= j+1

α(j + 1, k, z) β(i, k, y) ty(v, z)

(9) od
(10) od
(11) od

13.9 Learning parameters

Why do we need two algorithms? The α and β values computed by the inside and outside algorithms (for
SCFGs) can be used for parameter re-estimation using expectation maximization similar to the values computed
by the forward and backward algorithms (for HMMs).

Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36 8029

To do this we compute the expected number of times the state v is used in a derivation (of a single
sequence):

c(v) =
1

P(x | θ)

L∑
i=1

L∑
j=1

α(i, j, v) β(i, j, v).

(In fact, the definitions of α and β were designed to make such an equation exist.)

We can even push this a little bit further. The expected number of times that v was occupied and then the
production Wv →WyWz was used is:

c(v→ yz) =
1

P(x | θ)

L−1∑
i=1

L∑
j=i+1

j−1∑
k=i

β(i, j, v)α(i, k, y)α(k + 1, j, z) tv(y, z).

Then it follows that the EM re-estimation equation for the probabilities of the production Wv →WyWz is

t̂v(y, z) :=
c(v→ yz)

c(v)
=

L−1∑
i=1

L∑
j=i+1

j−1∑
k=i

β(i, j, v)α(i, k, y)α(k + 1, j, z) tv(y, z)

L∑
i=1

L∑
j=1

α(i, j, v) β(i, j, v)

.

Similar equations hold for the productions Wv → a. We have

c(v→ a) =
1

P(x | θ)

∑
i |xi=a

β(i, i, v) ev(a)

and hence,

êv(a) =
c(v→ a)

c(v)
=

∑
i|xi=a

β(i, i, v) ev(a)

L∑
i=1

L∑
j=1

α(i, j, v) β(i, j, v)

.

The EM re-estimation equations can be easily extended from a single observed sequence x to the case of multiple
independent observed sequences. The expected counts are simply summed over all sequences.

13.10 The CYK algorithm

The remaining problem is to find an optimal parse tree for the sequence (i. e., an “alignment” against the
grammar). This is solved by the Cocke-Younger-Kasami (CYK) algorithm. It is a variant of the inside algorithm
in which sums are replaced by max operations.

The CYK algorithm computes a variable γ(i, j, v) for the log value of the most probable path for the
subsequence xi, . . . , x j starting from the nonterminal Wv. In addition we keep in τ(i, j, v) a triple of integers used
for traceback. (Note that the algorithm is written in log-scale which would also be feasible for the inside and
outside algorithms.)

The value of the most probable complete parse of the entire sequence is γ(1,L, 1).

Just as the Viterbi algorithm can be used as an approximation of the forward-backward EM training
algorithm for HMMs, the CYK algorithm can be used as an approximation for the inside algorithm.

As an alternative to calculating the expected numbers of counts probabilistically using the inside-outside
algorithm, one can calculate the optimal CYK alignments for the training sequences and then count the
transitions and emissions that occur in those alignments.

13.11 Time and space complexity

The time complexity of SCFGs is O(L3M3), the space complexity O(L2M). This is quite a bit, but the time
complexity can be reduced for RNA SCFGs to O(L3M).

8030 Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36

CYK(G, x);

(1) for i = 1 to L do
(2) for v = 1 to M do γ(i, i, v) = log ev(xi); τ(i, i, v) = (0, 0, 0); od
(3) od
(4) for ` = 1 to L − 1 do
(5) for i = 1 to L − ` do
(6) j = i + `;
(7) for v = 1 to M do
(8) γ(i, j, v) = max

y,z
max

k=i... j−1
γ(i, k, y) + γ(k + 1, j, z) + log tv(y, z);

(9) τ(i, j, v) = arg max
(y,z,k),k=i... j−1

γ(i, k, y) + γ(k + 1, j, z) + log tv(y, z);

(10) od
(11) od
(12) od

13.12 Nussinov SCFG

We come now to simple RNA SCFGs. Recall the Nussinov algorithm for RNA folding. We can achieve the same
(if not more) by formulating it as a SCFG. Consider the following productions:

S→ aS | cS | gS | uS i unpaired
S→ Sa | Sc | Sg | Su j unpaired
S→ aSu | cSg | gSc | uSa i, j pair
S→ SS bifurcation
S→ ε termination

Assume that the probability parameters are known.

Because the productions correspond to secondary structure elements, the maximum probability parse
corresponds to the maximum probability secondary structure, if we assign base pair productions a relatively
high probability.2

We could convert the above SCFG into CNF form and then apply the general CYK algorithm. But in this
case it is not necessary and specific algorithms for specific SCFGs are typically more efficient. Hence we omit
the conversion into CNF and directly write down the Nussinov-style CYK.

Let γ(i, j) denote the log likelihood of the optimal structure given the SCFG (with estimated probability
parameters) for the subsequence xi, . . . , x j.

Let the probabilities of the SCFG productions be denoted by p(aS), p(aSu) etc.

Similar to the Nussinov algorithm, we could model the Zuker algorithm using SCFGs and apply the
inside-outside-CYK machinery with the same time complexity as the Zuker algorithm itself.

To solve our problem in Plan A (given alignment, compute consensus structure), we can build a comparative
SCFG.

The program pfold [Knudsen/Hein 99], for example, parses columns from an alignment instead of symbols
from a single sequence. Covarying columns get high emission probabilities. See also http://www.daimi.au.
dk/˜compbio/rnafold/.

13.13 Covariance models

Assume now we are given a family of related RNAs. Assume further we were able to compute a multiple RNA
sequence-structure alignment (e. g. using the mutual information of columns), that exhibits a clear consensus
structure like the one depicted below:

human a a G A C u u c g G a U C u G G c G a c a C C C
mouse u a C A C u u c g G a U G a C A c C a a a G U G

2Attention: This holds only iff each structure has an unambiguous parse tree. This is not the case for our Nussinov grammar. However,
folding grammars, which are unambiguous in this sense, exist.

http://www.daimi.au.dk/~compbio/rnafold/
http://www.daimi.au.dk/~compbio/rnafold/

Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36 8031

N-CYK(G, x);

(1) for i = 2 to L do γ(i, i − 1) = −∞; od
(2) for i = 1 to L do
(3) γ(i, i) = max{log p(xiS) + log p(ε), log p(Sxi) + log p(ε)}
(4) od
(5) for ` = 1 to L do
(6) for i = 1 to L − 1 do
(7) j = i + `;

(8) γ(i, j) = max


γ(i + 1, j) + log p(xiS)
γ(i, j − 1) + log p(Sx j)
γ(i + 1, j − 1) + log p(xiSx j)
max
i<k< j

γ(i, k) + γ(k + 1, j) + log p(SS)

(9) od
(10) od

worm a g G U C u u c g G c A C g G G c A c c a U U C
fly c c A A C u u c g G a U U u U G c U a c c A U A
orc a a G C C u u c g G a G C g G G c G u a a C U C

struc. . . (((. . . .) .)) . ((. (. . .)))

13.14 Covariance models

To describe the consensus structure with an SCFG-based model, we need several types of nonterminals to
generate different types of secondary structure and sequence elements.

• for base-paired columns we need pairwise emitting nonterminals (e. g. P→ aWb).

• for single stranded columns we need leftwise emitting nonterminals (e. g. L→ aW).

• for bulges and interior loops we need rightwise emitting nonterminals (e. g. R→Wa).

• we need bifurcation nonterminals (e. g. B→ SS).

• in addition we define a special start terminal for the immediate children and children of a bifurcation,
and a special end terminal (e. g. E→ ε, S→W).

13.15 Covariance models

The model is then best depicted by a tree. The below picture represents the RNA family in the above multiple
alignment as long as no insertions and deletions occur.

8032 Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36

S

B

L

P

L

L

S S

P

P

P

R

L

L

L

L

E E

L

P

P

L

L

L

We can read the productions off the tree:

S1 → L2,
L2 → (a | u | c)L3,
L3 → (a | g | c)B4
B4 → S5S15

and for the left stem:

S5 → P6,
P6 → gP7c, . . . ,
P7 → aR8u, . . . ,
. . . ,
etc.

In the CM model we use an emit-on-state formalism (Mealy machine). Thus we have 16 pairwise emission
probabilities and 4 leftwise resp. 4 rightwise emission probabilities. The transition probabilities are all 1 in the
ungapped case. They become more interesting if we allow for insertions and deletions.

We discuss now how to extend the CM model to allow for insertions and deletions of arbitrary length.

13.16 Design of CM models

Gaps in CMs are modeled using a similar strategy as in profile HMMs. In profile HMMs each position in a
multiple alignment corresponds to a set of three states: match, insert, delete.

Similarly, a CM expands an ungapped consensus model into a stereotyped pattern of individual states.
However, symbols can be emitted to the left or to the right or to both sides.

Please note that I present here one possible way to construct a CM.

When pairwise nodes expand, they have several insertion and deletion possibilities. A deletion may
remove both bases in the base pair or solely the 5’ or 3’ partner, leaving the remaining unpaired partner as a
bulge.

Insertions in the base-paired stem may occur on the 5’ side, on the 3’ side, or both.

Hence in CMs a pairwise node expands into 6 states:

• an MP state,

• a D state (for complete deletion of a base pair),

• ML and MR states (for a single-base deletion that removes the 3’ or 5’ base, resp.), and

• IL and IR states that allow insertions on the 5’ or 3’ side of the pairs, resp.

Leftwise and rightwise nodes for single-stranded consensus positions expand to match, insert and delete
states:

• ML, MR,

• IL, IR,

• D

So given an RNA consensus we could end up with the following.

The root is expanded to a start state S and insert states for either the 5’ or 3’ side.

The left side under a bifurcation is expanded to a single S state, the right side to an S state and an
insert-left IL state. This arbitrary arrangement of the insert states assures that an insertion in any position is
unambiguously assigned.

Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36 8033

Bifurcation nodes and end nodes in the consensus tree simply become B and E states in the CM.

States are connected by state transitions. As with profile HMMs, states connect all insert states in the
current node to all non-insert states in the next node.

Insert states have a state transition to themselves to allow arbitrary length insertions, and IL connects to
IR but not vice versa so that insertions are unambiguously assigned to a single path through the model.

S

IL IR

ML D MP MR

IL IR

ML D

IL

D MR

IR

B

S S

E

IL

S node (root)

P node

L node

B node

R node

Note that this is only one possible design of a CM model.

13.17 Constructing a CM from an RNA alignment

Assume we have an RNA alignment annotated with a consensus secondary structure. Using the structure
annotation on the non-insert columns of the alignment, a consensus tree is first constructed. The nodes of this
tree are “filled” with CM states, and the states are connected as discussed above.

Each sequence in the alignment can then be assigned a unique CM parse tree. Emission and transition
events in these parse trees can be counted and then used for estimating emission and transition probabilities.

13.18 CM alignment algorithms

As already seen in the Nussinov-style SCFG, it would be tedious to apply the Chomsky normal form to the
SCFGs for RNA analysis. We can give more specific alignment algorithms for CMs.

We denote the M different states by W1, . . . ,WM. Let v, y and z be indices for the states Wx,Wy and Wz.

There are seven types of states labelled P, L, R, D, S, B, and E, for Pairwise emitting, Leftwise emitting,
Rightwise emitting, Delete, Start, Bifurcation and End states respectively. W1 is the start state (root). The seven
state types are associated with symbol emission and transition probabilities.

8034 Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36

The ∆ entries in the following table are for notational convenience and denote the number of symbols
emitted on the left and right of state v.

Type Production ∆L
v ∆R

v Emission Transition
P Wv → xiWyx j 1 1 ev(xi, x j) tv(y)
L Wv → xiWy 1 0 ev(xi) tv(y)
R Wv →Wyx j 0 1 ev(x j) tv(y)
D Wv →Wy 0 0 1 tv(y)
S Wv →Wy 0 0 1 tv(y)
B Wv →WyWz 0 0 1 1
E Wv → ε 0 0 1 1

In addition let Cv be the children of the state v and Pv be the parents of the state. Start and delete states are
treated identically in the alignment algorithms. The difference is only structurally: Start states occur as the
root state or as children of bifurcations. Each bifurcation state branches into a single pair of start states. Delete
states occur within R, L, and P nodes.

Apart from the fact that the bifurcation rule is the only “Chomsky” style production, there are three
additional restrictions on CMs, compared to general SCFGs.

1. Each state may use only one type of production rule.

2. States are not fully interconnected.

3. States are numbered such that y > v for all y ∈ Cv, except for insert states, where y ≥ v for all y ∈ Cv. This
condition is important for non-emitting states, guaranteeing that there are no non-emitting cycles.

13.19 The inside algorithm

Now we turn to the scoring problem. We want to calculate the likelihood P(x | θ) of the sequence x1, . . . , xL
given a covariance model θ.

Let αv(i, j) be the summed probability of all parse subtrees rooted at v for the subsequence xi, . . . , x j.

αv(j + 1, j) is the probability for the null subsequence of length zero; this must be included as a boundary
condition since we allow non-emitting D, S, and B states.

In order to get a brief description of the recurrence, we use the notation ev(xi, x j) for all emission probabilities,
even though it may not depend on xi or on x j. For L states we let ev(xi, x j) := ev(xi), for R states we let
ev(xi, x j) := ev(x j), and for non-emitting states we (formally) let ev(xi, x j) := 1, as in the above table.

When complete, the probability P(x | θ) is in α1(1,L).

If there are b bifurcation states and a other states, the order of complexity of the algorithm is O(L2M) in
memory and O(aL2 + bL3) in time.

We omit the outside algorithm and the inside-outside expectation maximization. (See Durbin book,
Chapter 10.3, pp. 287). Instead we go directly to an important variant of the CYK algorithm.

13.20 The CYK algorithm for database searching

Suppose we are given a very long sequence (a complete genome, for instance) and our task is to find one or
more subsequences that match the RNA model. The algorithms we have are well suited for global alignment,
but still ill suited for local alignment. Most of all we do not want to spend Ω(L2) space!

We can achieve this by limiting the length of the longest aligned subsequence to a constant D and by
employing a transformation of the coordinate system. The idea is essentially the same as in the “banded”
versions of other alignment algorithms, e. g., Needleman-Wunsch.

The dynamic programming matrix is indexed by (v, j, d) instead of (v, i, j) where d := j − i + 1 is the length
of the subsequence xi, . . . , x j and d ≤ D.

A standard CYK algorithm for SCFG alignment returns the log of the probabilities P(S, π̂ | θ) of the
sequence S and the best parse π̂ given the model θ. This is strongly a function of the length of the aligned

Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36 8035

Inside-CM(CM, x);

(1) for j = 0 to L do
(2) for v = M to 1 do

(3) αv(j + 1, j) =



1, if sv = E;∑
y∈Cv

tv(y)αy(j + 1, j), if sv ∈ {S, D};

αy(j + 1, j)αz(j + 1, j), if sv = B;
0, if sv ∈ {P, L, R} ;

(4) od
(5) od
(6) for ` = 1 to L do for i = 1 to L − 1 do j = i + `;
(7) for v = M to 1 do

(8) αv(i, j) =



0, if sv = E;
0, if sv = P, i = j;

j∑
k=i−1

αy(i, k)αz(k + 1, j), if sv = B;

ev(xi, x j) ·
∑
y∈Cv

tv(y)αy(i + ∆L
v , j − ∆R

v), otherwise;

(9) od
(10) od
(11) od

sequences, which makes it difficult to choose the best matching subsequence among overlapping subsequences
of different length.

Similar to HMMs, a nice solution to this problem is to calculate log-odds scores relative to a (more or less)
reasonable null model of random sequences. For example one can assume an independent identically distributed
(i.i.d.) null model in which the likelihood of a sequence is the product of individual residue frequencies fa.

Then the log odds scores are as follows:

for sv = P: log êv(a, b) = log(ev(a, b)/(fa fb))
for sv = L: log êv(a, b) = log(ev(a)/ fa)
for sv = R: log êv(a, b) = log(ev(b)/ fb)

CYK-CM(CM, x) Initialization:

(1) for j = 0 to L do
(2) for v = M to 1 do

(3) γv(j, 0) =


0, if sv = E
max
y∈Cv

{
log tv(y) + γy(j, 0)

}
, if sv ∈ {S, D}

γy(j, 0) + γz(j, 0), if sv = B, Cv = {y, z}
−∞, otherwise

(4) od
(5) od

The above algorithm fills a D × L matrix instead of an L × L matrix. The following picture shows the steps
of the CYK recursion for the four different state types.

8036 Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36

CYK-CM(CM, x) Recursion:

(1) for j = 1 to L do
(2) for d = 1 to min(D, j) do
(3) for v = M to 1 do

(4) γv(j, d) =



−∞, if sv = E

−∞, if sv = P, d < 2

max
0≤k≤d

{
γy(j − k, d − k) + γz(j, k)

}
, if sv = B,Cv = {y, z}

log êv(xi, x j) + max
y∈Cv

{
log tv(y) + γy(j − ∆R

v , d − ∆L
v − ∆R

v)
}
, otherwise

(5) od
(6) od
(7) od

v

y

vy

y

v

v

y

z

v

y z

v

y y

v

v

y

a) sv = L

a) sv = P

a) sv = R

a) sv = B

i

i+ 1

j − k + 1 j

i i+ 1 j − 1ij

i+ 1

j

j − kjj − 1 i

d− 1 d− 1

d− 2

d d

d
d− k k

j

j

j

j

d d

d d

13.21 Summary

• Context free grammars (CFGs) are used to model the class of context-free languages and are well-suited
to describe RNA secondary structures.

• The stochastic variant (SCFGs) models the probabilities of transitions and symbol emissions.

• SCFGs can be used very similarly as HMMs. HMMs model regular languages whereas SCFGs model
context-free languages.

• The forward-backward, the Viterbi, and the Baum-Welch algorithms have all corresponding algorithms
for SCFGs (inside, outside, CYK, etc).

• Covariance models (CMs) are meant to model a consensus RNA structure and allow for insertions and
deletions.

Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36 8037

13 Plan B

13 Fold and Align Simultaneously

13.1 Plan B: Sequence-Structure Alignment

Given: k RNA sequences (R1,S1), . . . (Rk,Sk).

Si may be

• secondary structure

• arbitrary structure,
e.g., unknown structure (all possible base pairs) or base pair probabilities (probable base pairs, weighted)

Find: Best structural alignment A∗((R1,S1), . . . (Rk,Sk)).

Denote with Σ̂ the alphabet extended with a gap character.

Some easy definitions.
Let R be a sequence over Σ̂ of length m. A pair (i, j) with 1 ≤ i < j ≤ m is called interaction if si , ’-’ and s j , ’-’.
A set S of interactions is called annotation of R.

Two interactions (i, j), (k, l) in an annotation are in conflict if i = k or i = l or j = k or j = l. A (secondary)
structure is an annotation with no two interactions in conflict. If R is a sequence and S an annotation we call
the pair (R,S) an annotated sequence. If S is a (secondary) structure we call it a structured sequence.

According to the definition the below figures show one structured sequence and one annotated sequence
together with two possible structural alignments

interactions alignment with high alignment with high
sequence score interaction score

More definitions.
If (R1,S1), . . . , (Rk,Sk) are k annotated sequences with lengths n1, . . . ,nk then a multiple structural alignment A of
(R1,S1), . . . , (Rk,Sk) is a k × n–dimensional matrix consisting of k structured sequences (R̂1, Ŝ1), . . . , (R̂k, Ŝk) with
the following properties:

1. R̂i
j ∈ Σ̂ for all 1 ≤ i ≤ k, 1 ≤ j ≤ n, and sequence R̂i gives sequence Ri if the gaps are removed.

8038 Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36

2. There is no column consisting only of gap characters. This implies

max{n1, . . . ,nk} ≤ n ≤
k∑

i=1

ni .

3. For all (l,m) ∈ Ŝi the following holds (l − gaps(i, l),m − gaps(i,m)) ∈ Si, where

gaps(i, j) = |{l < j | R̂i
l = ’-’}| .

What makes a structural alignment good?

LetAS((R1,S1), . . . (Rk,Sk)) be the set of all alignments of (R1,S1), . . . , (Rk,Sk). The best structural alignments
are

arg maxA∈AS((R1,S1),...(Rk,Sk))sc(A) ,

where
sc : AS((R1,S1), . . . (Rk,Sk))→ R

is a structural alignment score function.

We focus on k = 2 and use

sc(A) =

|R̂1
|∑

j=1

σ(R̂1
j , R̂

2
j) +

∑
(j,k)∈Ŝ1

(j,k)∈Ŝ2

τ(R̂1
j , R̂

1
k , R̂

2
j , R̂

2
k) .

Complexity: In general, computing an optimal sequence-structure RNA alignment is an NP-complete
problem [Goldman, Istrail, Papadimitriou, 1999]. The pseudoknot-free version of the problem, however, can be solved in O(n6)
[Sankoff, 1985].

13.2 Plan B: Sankoff’s Algorithm

“Sankoff = Needleman/Wunsch + Zuker”.

To simplify things, we only consider “Needleman/Wunsch + Nussinov” in this lecture. This allows us to
formulate the problem as follows:

Input: two annotated sequences (R1,S1) and (R2,S2)

Output: optimal structural alignment (no pseudoknots) with respect to sc.

Idea: Use a four-dimensional array A to record the value of solutions of subproblems. The entry Ai, j,k,l

contains the score of an optimal structural alignment between the annotated subsequences (R1
i,..., j,S

1
i,..., j) and

(R2
k,...,l,S

2
k,...,l)

Hence, A1,|R1 |,1,|R2 | contains the score of an optimal structural alignment of (R1,S1) and (R2,S2).

Initialization: Aligning with empty annotated sequences yields a certain gap score:

Ai, j,k,l =

max{0, l − k + 1} · γ for all j < i
max{0, j − i + 1} · γ for all l < k

Recurrence:

Ai, j,k,l = max


Ai, j−1,k,l + γ,

Ai, j,k,l−1 + γ,

Ai, j−1,k,l−1 + σ(R1
j ,R

2
l)

AM
i, j,k,l

AM
i, j,k,l = max

h≥i,(h, j)∈S1

q≥k,(q,l)∈S2

Ai,h−1,k,q−1 + Ah+1, j−1,q+1,l−1+

σ(R1
h,R

2
q) + σ(R1

j ,R
2
l) + τ(R1

h,R
1
j ,R

2
q ,R

2
l)

Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36 8039

i h j

k lq

Remarks:

• Traceback
Needs stack/recursion→Exercise.

• Running time
Depends on the type of input. Let n = |R1

| and m = |R2
|.

– Two structures: O(n2m2). Why?

– S1 structure, S2 annotation: O(n2m3). Why?

– Two annotations: O(n3m3). Why?

13.3 Plan B: T-Lara

RNA sequence-structure alignment by combinatorial optimization [Bauer/Klau/Reinert]

8040 Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36

. . .

C A C.G A U G C U U A G

RNA sequences of known or
unknown structure

G A U.C C C U A C A G G

max
∑

l∈L
wlxl +

∑

l∈L

∑

m∈L
wlmylm

s. t.
∑

l∈I
xl ≤ 1 ∀ sets of crossing lines I

ylm = yml ∀ l ,m ∈ L∑

m∈L
ylm ≤ xl ∀ l ∈ L

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 integer

C A C G A U G C U U A G.

G A U C C C U A C A G G.

adapt λ-
multiplier
in each
iteration

C A C G A U G C U U A G.

G A U C C C U A C A G G. . .

C A C.G A U G C U U A G

G A U.C C C U A C A G G

- -

- -

Structural alignment

max
∑

l∈L
wlxl +

∑

l∈L

∑

m∈L
(λi

lm + wlm)ylm

s. t.
∑

l∈I
xl ≤ 1 ∀ sets of crossing lines I

ylm = yml ∀ l ,m ∈ L∑

m∈L
ylm ≤ xl ∀ l ∈ L

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 integer

Works well even for long sequences including pseudoknots.

See the separate slides for details.

13 Plan C

13 First Fold, Then Align

13.1 Plan C: First fold, then align fixed structures

Let’s have a look at some first ideas to compare two fixed RNA secondary structures.

Idea 1: Use symmetric set difference.

δSD(S1,S2) := (S1
\ S2) ∪ (S2

\ S1)

Example:

S1 =(((.....))).

S2 =(((.....)))..

Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36 8041

δSD(S1,S2) = . . ., but should intuitively be close to zero → not a good measure to compare two different
structures.

Idea 2: Use Hausdorff distance

δH(S1,S2) := max(δasym(S1,S2), δasym(S2,S1))

δasym(S1,S2) := max
(i, j)∈S1

min
(k,l)∈S2

δ((i, j), (k, l))

δ((i, j), (k, l)) := max(|i − k|, | j − l|)

What is the Hausdorff distance of example on previous slide?

Another example:

S1 =(((.....))).

S2 = (....).......(((.....))).

S3 =(....)...(((.....))).

δH(S1,S2) = . . ., δH(S1,S3) = . . ., which should intuitively be closer together.

Idea 3: Represent RNA secondary structure as tree and compare trees

2.3 Representation and Visualization of RNA Structures 19

U

G

G

A
A
GAA

GCU
CU

G

G
C
A G C U U U

U
U A A

G
C
G
U

U U
A
U
A
U
A

A
G A

G

U

U
AU

A
U

A
U

A

UG
C

G
C

G

U
U

C

C

A

(a)

v

U G◦C

G◦C

A◦U

A G◦U

A◦U

A◦U

G◦C

C◦G

U◦A

C U G G C

U U A A G◦C

C◦G

G◦C

U◦G

U U◦A

A◦U

U◦A

A◦U

U◦A

A◦U

A G A G U U A

U

G U

A

(b)

SR

M

H SR

IL

H

(c)

v

U SR

G SR

G SR

A ML

A SR

G SR

A SR

A SR

G SR

C SR

U CUGGC A

G

C

U

U

U

UUAA SR

G SR

C SR

G SR

U IL

U SR

U SR

A SR

U SR

A SR

U SR

A AGAGUUA U

A

U

A

U

A

U

C

C

G

C

GU

C

C

U

A

(d)

Figure 2.4: (a) shows a secondary structure with colored components that indicate
the relation between the representations. (b) shows the natural tree representation
where internal nodes correspond to base-pairs and leaves correspond to unpaired
bases. (c) shows the coarse grained tree representation. The red and cyan part are
stacking region (S), the green part is a multiloop (M), the yellow part is an internal
loop (I), and the blue and magenta parts are hairpin loops (H). A bulge left (L)
and a bulge right (R) are internal loops that have only a left and right unpaired
region, respectively. Note that single stranded regions at the root level of the tree
and in multi-loops are omitted in this tree representation. (d) shows a simplified
parse tree for some grammar describing RNA secondary structures. The internal
nodes correspond to productions of the grammar and impose a structure on the
sequence that resides at the leaves. A virtual root node v is added in (b) and (d)
to guaranty a tree structure.

2.3 Representation and Visualization of RNA Structures 19

U

G

G

A
A
GAA

GCU
CU

G

G
C
A G C U U U

U
U A A

G
C
G
U

U U
A
U
A
U
A

A
G A

G

U

U
AU

A
U

A
U

A

UG
C

G
C

G

U
U

C

C

A

(a)

v

U G◦C

G◦C

A◦U

A G◦U

A◦U

A◦U

G◦C

C◦G

U◦A

C U G G C

U U A A G◦C

C◦G

G◦C

U◦G

U U◦A

A◦U

U◦A

A◦U

U◦A

A◦U

A G A G U U A

U

G U

A

(b)

SR

M

H SR

IL

H

(c)

v

U SR

G SR

G SR

A ML

A SR

G SR

A SR

A SR

G SR

C SR

U CUGGC A

G

C

U

U

U

UUAA SR

G SR

C SR

G SR

U IL

U SR

U SR

A SR

U SR

A SR

U SR

A AGAGUUA U

A

U

A

U

A

U

C

C

G

C

GU

C

C

U

A

(d)

Figure 2.4: (a) shows a secondary structure with colored components that indicate
the relation between the representations. (b) shows the natural tree representation
where internal nodes correspond to base-pairs and leaves correspond to unpaired
bases. (c) shows the coarse grained tree representation. The red and cyan part are
stacking region (S), the green part is a multiloop (M), the yellow part is an internal
loop (I), and the blue and magenta parts are hairpin loops (H). A bulge left (L)
and a bulge right (R) are internal loops that have only a left and right unpaired
region, respectively. Note that single stranded regions at the root level of the tree
and in multi-loops are omitted in this tree representation. (d) shows a simplified
parse tree for some grammar describing RNA secondary structures. The internal
nodes correspond to productions of the grammar and impose a structure on the
sequence that resides at the leaves. A virtual root node v is added in (b) and (d)
to guaranty a tree structure.

2.3 Representation and Visualization of RNA Structures 19

U

G

G

A
A
GAA

GCU
CU

G

G
C
A G C U U U

U
U A A

G
C
G
U

U U
A
U
A
U
A

A
G A

G

U

U
AU

A
U

A
U

A

UG
C

G
C

G

U
U

C

C

A

(a)

v

U G◦C

G◦C

A◦U

A G◦U

A◦U

A◦U

G◦C

C◦G

U◦A

C U G G C

U U A A G◦C

C◦G

G◦C

U◦G

U U◦A

A◦U

U◦A

A◦U

U◦A

A◦U

A G A G U U A

U

G U

A

(b)

SR

M

H SR

IL

H

(c)

v

U SR

G SR

G SR

A ML

A SR

G SR

A SR

A SR

G SR

C SR

U CUGGC A

G

C

U

U

U

UUAA SR

G SR

C SR

G SR

U IL

U SR

U SR

A SR

U SR

A SR

U SR

A AGAGUUA U

A

U

A

U

A

U

C

C

G

C

GU

C

C

U

A

(d)

Figure 2.4: (a) shows a secondary structure with colored components that indicate
the relation between the representations. (b) shows the natural tree representation
where internal nodes correspond to base-pairs and leaves correspond to unpaired
bases. (c) shows the coarse grained tree representation. The red and cyan part are
stacking region (S), the green part is a multiloop (M), the yellow part is an internal
loop (I), and the blue and magenta parts are hairpin loops (H). A bulge left (L)
and a bulge right (R) are internal loops that have only a left and right unpaired
region, respectively. Note that single stranded regions at the root level of the tree
and in multi-loops are omitted in this tree representation. (d) shows a simplified
parse tree for some grammar describing RNA secondary structures. The internal
nodes correspond to productions of the grammar and impose a structure on the
sequence that resides at the leaves. A virtual root node v is added in (b) and (d)
to guaranty a tree structure.

[Source: Matthias HÃPchsmann’s

PhD thesis] Idea 3.1: Shapiro’s encoding

8042 Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36

Transform structures into strings, e.g.,

2.3 Representation and Visualization of RNA Structures 19

U

G

G

A
A
GAA

GCU
CU

G

G
C
A G C U U U

U
U A A

G
C
G
U

U U
A
U
A
U
A

A
G A

G

U

U
AU

A
U

A
U

A

UG
C

G
C

G

U
U

C

C

A

(a)

v

U G◦C

G◦C

A◦U

A G◦U

A◦U

A◦U

G◦C

C◦G

U◦A

C U G G C

U U A A G◦C

C◦G

G◦C

U◦G

U U◦A

A◦U

U◦A

A◦U

U◦A

A◦U

A G A G U U A

U

G U

A

(b)

SR

M

H SR

IL

H

(c)

v

U SR

G SR

G SR

A ML

A SR

G SR

A SR

A SR

G SR

C SR

U CUGGC A

G

C

U

U

U

UUAA SR

G SR

C SR

G SR

U IL

U SR

U SR

A SR

U SR

A SR

U SR

A AGAGUUA U

A

U

A

U

A

U

C

C

G

C

GU

C

C

U

A

(d)

Figure 2.4: (a) shows a secondary structure with colored components that indicate
the relation between the representations. (b) shows the natural tree representation
where internal nodes correspond to base-pairs and leaves correspond to unpaired
bases. (c) shows the coarse grained tree representation. The red and cyan part are
stacking region (S), the green part is a multiloop (M), the yellow part is an internal
loop (I), and the blue and magenta parts are hairpin loops (H). A bulge left (L)
and a bulge right (R) are internal loops that have only a left and right unpaired
region, respectively. Note that single stranded regions at the root level of the tree
and in multi-loops are omitted in this tree representation. (d) shows a simplified
parse tree for some grammar describing RNA secondary structures. The internal
nodes correspond to productions of the grammar and impose a structure on the
sequence that resides at the leaves. A virtual root node v is added in (b) and (d)
to guaranty a tree structure.

into (SR(M((H)(SR(I(H))))), and use standard sequence
comparison. Example:

S1 = (((..(((....))))))

S2 = (((......)))

Among the optimal alignments is:
(((..(((....))))))

(((..---....)))---

Problem: Bracket pairs are not treated as unit. Idea 3.2: Compare trees by tree edit or tree alignment
Generalization of edit operations from strings to trees:

• relabel
Change the label of a node. This corresponds to (mis-)matches.

• delete
Deleting a node makes its children the children of its parent, preserving their order.

• insert (complementary to delete)
Inserting a node v into a tree T results in a tree T′, for which deleting v yields the original tree T.

The tree edit distance of S1 and S2 is then the minimum number of edit operations to transform the corresponding
tree representations of S1 and S2 into each other.

32 Introductory Material

a

b c

d e

f

T1

a

b x

d e

f

T2

a

b d e f

T3

x→ λ

x← λ
c→ x

c← x

Figure 2.6: To simplify the illustration, a node and its label are identical. T1

is transformed into T2, by relabeling c with x, which in turn is transformed into
T3 by deleting x. Note that the edit operations can be applied in both directions.
T2 results from T3 by inserting x as a child of node a whereas the nodes d and e
become the children of x.

• insert : This operation is complementary to delete. Inserting a new

node v into T results in a new tree T ′ such that the deletion of v in T ′

results in T . Intuitively, a node v is inserted as a child of v′ making v

the parent of a consecutive subsequences of children of v′.

According to the sequence edit model, I represent edit operations by α→ β

where (α, β) ∈ Σ2
λ. α→ λ and λ→ β denote the functions delete and insert

of a and b, respectively. Otherwise, a→ b is the relabel function, relabeling

a with b. An illustration of the tree edit operations is given in Figure 2.6.

Note, the node that is affected by an edit operations is defined by the edit

operation together with the tree to be edited and the resulting tree.

Let E be a sequence e1, e2, . . . , en of edit operations, for short edit-sequence.

Following Tai, E transforms T into T ′ if there is a sequence of trees T0, T1, . . . , Tn

such that T = T0, T ′ = Tn and Ti results from the application of ei to Ti−1

for i ∈ [1, n]. Let δ be a metric defined on edit operations. The cost of

an edit-sequence E is the sum of the costs of its edit operations, that is:

δ(E) =
∑n

i=1 δ(ei) which is also a metric [240]. The edit distance δTE be-

tween trees T1 and T2 is the minimum cost that is necessary to transform T1

into T2:

Adapted dynamic programming algorithms exist for computing, e.g., the minimum tree edit distance,
which, however, go beyond the scope of this lecture.

13.2 But . . .

Prediction results deserve a careful further investigation.

Here are some reasons why:

Computational RNA Analysis, by Daniel Huson, Clemens Gröpl, Gunnar Klau, June 3, 2014, 09:36 8043

• Primary sequence does not fully determine the in vivo structure (chaperons, base modifications, tran-
scriptional process)

• Ribo-switches will fool all tools we have seen: do not have one structure

• Only few tools can handle pseudoknots.

13.3 Summary

The comparative approach may help to find the right structure.

There are three ways to do comparative approach, each has its advantages and disadvantages.

13.4 Sources for this lecture

• Lectures by Daniel Huson/Knut Reinert, TÃ 1
4 bingen/Berlin, Paul Gardner, Copenhagen, and David Math-

ews, Rochester

• J. Gorodkin, L.J. Heyer, S. Brunak, G.D. Stormo, Displaying the information contents of structural RNA
alignments: the structure logos, CABIOS 1997, 13:6.

• R. Durbin, S. Eddy, A. Krogh und G. Mitchison, Biological sequence analysis, Cambridge, 1998.

• D.W. Mount. Bioinformatics: Sequences and Genome analysis, 2001.

• P. Gardner, R. Giegerich, A comprehensive comparison of comparative RNA structure prediction ap-
proaches, BMC Bioinformatics 2004, 5:140

• M. HÃPchsmann, The tree alignment model: algorithms, implementations and applications for the
analysis of RNA structures. PhD thesis, Bielefeld 2005.

• . . .

	Comparative RNA Analysis
	Plan A: Fold/Analyze Alignments
	Plan A: Mutual information content
	Plan A: RNA analysis with stochastic context free grammars
	Transformational grammars
	Context-free grammars
	Stochastic context-free grammars
	Chomsky normal form
	Inside and outside algorithms
	Learning parameters
	The CYK algorithm
	Time and space complexity
	Nussinov SCFG
	Covariance models
	Covariance models
	Covariance models
	Design of CM models
	Constructing a CM from an RNA alignment
	CM alignment algorithms
	The inside algorithm
	The CYK algorithm for database searching
	Summary
	Plan B: Sequence-Structure Alignment
	Plan B: Sankoff's Algorithm
	Plan B: T-Lara
	Plan C: First fold, then align fixed structures
	But …
	Summary
	Sources for this lecture

