
Suffix arrays
This exposition was developed by Clemens Gröpl and Knut Reinert. It is based on
the following sources, which are all recommended reading:

1. Simon J. Puglisi, W. F. Smyth, and Andrew Turpin, A taxonomy of suffix array
construction algorithms, ACM Computing Surveys, Vol. 39, Issue 2, to appear
(2007). [PST07]

2. Udi Manber, Gene Myers: Suffix arrays: A new method for online string search-
ing, SIAM Journal on Computing 22:935-48,1993

3. Kasai, Lee, Arimura, Arikawa, Park: Linear-Time Longest-Common-Prefix
Computation in Suffix Arrays and Its Applications, CPM 2001

4. Mohamed Ibrahim Abouelhoda, Stefan Kurtz, Enno Ohlebusch: Replacing suf-
fix trees with enhanced suffix arrays. Journal of Discrete Algorithms 2 (2004)
53-86.

5. Dan Gusfield: Algorithms in strings, trees and sequences, Cambridge, pages
94ff.

7000

Introduction

Exact string matching is a basic step used by many algorithms in computational
biology: Given a pattern P = P[1 .. m], and a text S = S[1 .. n], we want to find all
occurences of P in S.

This can readily be done with exact string matching algorithms in time O(m + n).
These algorithms perform some kind of preprocessing of the pattern. In this way it
is often possible to exclude portions of the text from consideration (e. g. the Horspool
algorithm can shift the search window by m positions if a verification fails). But as
long as m = O(1), the running time for this class of algorithms cannot be o(n).

In order to achieve a truly sublinear search time, we have to preprocess the text .
Preprocessing the text is useful in scenarios where the text is relatively constant
over time (e. g. a genome), and we will search for many different patterns.

Even if the text is very long, we do not need to scan it completely for every query.
The running time can be as low as O(m + p), where p is the number of occurrences.
Here we will see algorithms to achieve a search time of O(m + p + log n). In practice,
the extra log n factor is counterbalanced by a good caching behavior.

7001

Introduction (2)

In this lecture we introduce one such preprocessing, namely the construction of a
suffix array .

Suffix arrays are closely related to suffix trees. A good reference for suffix trees
is the book of Gusfield. In 1990, Manber and Myers introduced suffix arrays as a
space efficient alternative to suffix trees.

Both suffix trees and suffix arrays require O(n) space, but whereas a recent, tuned
suffix tree implementation requires 13-15 Bytes per character (Kurtz, 1999), for suf-
fix arrays, as few as 5 + o(1) bytes are sufficient (with some tricks).

7002

Introduction (3)

Definition 1. Given a text S of length n, the suffix array for S, often denoted suftab,
is an array of integers of range 1 to n specifying the lexicographic ordering of the
suffixes of the string S.

It will be convenient to assume that S[n] = $, where $ is smaller than any other
letter.

That is, suftab[j] = i if and only if S[i .. n] is the j-th suffix of S in ascending lexico-
graphical order. We will write Si := S[i .. n].

We will assume that n fits into 4 bytes of memory. (That is, n < 232 =
4 294 967 296.) Then the basic form of a suffix array needs only 4n bytes.

The suffix array can be computed by sorting the suffixes, as illustrated in the follow-
ing example.

7003

Example

The text is S = abaababbabbb$, n = 13. The suffix array is:

Suffixes Ordered suffixes
i Si i suftab[i] Ssuftab[i]

1 abaababbabbb$ 1 13 $
2 baababbabbb$ 2 3 aababbabbb$
3 aababbabbb$ 3 1 abaababbabbb$
4 ababbabbb$ 4 4 ababbabbb$
5 babbabbb$ 5 6 abbabbb$
6 abbabbb$ 6 9 abbb$
7 bbabbb$ 7 12 b$
8 babbb$ 8 2 baababbabbb$
9 abbb$ 9 5 babbabbb$

10 bbb$ 10 8 babbb$
11 bb$ 11 11 bb$
12 b$ 12 7 bbabbb$
13 $ 13 10 bbb$

It is tempting to confuse suftab [i] with S suftab [i] since there is a one-to-one corre-
spondence, but of course the two are completely different concepts.

7004

Example (2)

Compare this to the suffix tree, which is obtained by merging common prefixes of
the suffixes Si in a trie. (Note: The string in the figure has no trailing $. Some
suffixes are not numbered; their paths lead to internal nodes.)

a b

a b a b

a b
a

b

a b

a ba b a b

b
a
b
b
a
b
b
b

b
a
b
b
a
b
b
b

b
a
b
b
a
b
b
b

b
a
b
b
b

b
b
b

b
b
b

b
b
b

S = abaababbabbb

1 2

3

4

56

7

89

10

b

7005

Why another algorithm?

The suffix array can be constructed in (essentially) 4n space by sorting the suffix
indices using any sorting algorithm. (Exercise: How much would a simple quicksort
cost?) But such an approach fails to take advantage of the fact that we are sorting
a collection of related suffixes. We cannot get an O(n) time algorithm in this way.

Alternatively, we could first build a suffix tree in linear time, then transform the suffix
tree into a suffix array in linear time (exercise: work out the details), and finally
discard the suffix tree. Of course, sufficient memory has to be available to construct
the suffix tree. Thus this approach fails for large texts.

7006

Why another algorithm? (2)

Over the last 15 years or so, there have been hundreds of research articles pub-
lished on the construction and application of suffix trees and suffix arrays. A re-
cent survey on suffix array construction algorithms is [PST07]. In the introduction,
Puglisi, Smyth, and Turpin write:

It has been shown that

• practical space-efficient suffix array construction algorithms (SACAs)
exist that require worst-case time linear in string length;

• SACAs exist that are even faster in practice, though with supralinear
worstcase construction time requirements;

• any problem whose solution can be computed using suffix trees is solv-
able with the same asymptotic complexity using suffix arrays.

Thus suffix arrays have become the data structure of choice for many, if not
all, of the string processing problems to which suffix tree methodology is
applicable.

7007

Why another algorithm? (3)

[PST07]

7008

Why another algorithm? (4)

In [PST07] running times for 17 SACAs are listed. Today the original construction
proposed by Manber and Myers is about 30 times slower than the fastest SACA
known so far. The race is not finished yet, new algorithms and implementations are
being developed and it is hard to predict where this will eventually lead to. Therefore
we will not discuss a SACA in full detail in this lecture but only mention a few basic
ideas.

One such idea is prefix doubling. It is the fundament of the original MM algorithm
(1990). A modified version by Larsson and Sadakane (1999) is ‘only’ a factor 3
slower than the currently best one.

7009

Prefix doubling

In order to construct the suffix array we have to cleverly sort the n suffixes S1, ... , Sn.

A prefix-doubling algorithm will not sort the suffixes completely in a single stage.
Instead, it proceeds in dlog2(n + 1)e stages.

In the first stage the suffixes are arranged into groups or buckets according to their
first symbol. Thus they are ordered with repect to their prefixes of length 1.

We say that the suffixes are in ≤h-order if they are ordered lexicographically ac-
cording to the first h letters (=h and <h are defined accordingly).

Inductively, the algorithm partitions the buckets of the preceeding stage (≤h) further
by sorting according to twice the number of symbols (≤2h). We will number the
stages 1, 2, 4, 8, ... to indicate the number of affected symbols. After the h-th stage,
the suffixes are sorted according to ≤h order, and all suffixes in a bucket have a
common prefix of length h.

We are done when h ≥ n. Each stage takes O(n) time. Thus the total running time
is O(n log n).

7010

Prefix doubling (2)

The key observation is:

• In order to refine the ordering of an h-bucket to a ≤2h-order, it suffices to look
at the h positions following the (common) prefix of length h;

• These positions are the prefixes of other suffixes and have been ≤h-sorted
already.

This technique has become known as prefix doubling.

Let us summarize this idea:
Observation 2 (Karp, Miller, Rosenberg (1972)).
Let Si and Sj be two suffixes belonging to the same bucket after the h-th step, that
is Si =h Sj . We need to compare the next h symbols. But the next h symbols of
Si (respectively, Sj) are exactly the first h symbols of Si+h (respectively, Sj+h). By
assumption we already know the relative order of Si+h and Sj+h according to ≤h.

7011

Prefix doubling (3)

For this approach to work it is necessary that we can access the ≤h-rank of a suffix
(i. e., its position according to the ≤h-order). Therefore the inverse of the current
suftab table is stored in another table sufinv .

These two tables (suftab, sufinv) together amount to the 8n bytes required by the
Manber-Myers algorithm.

7012

Searching

7013

Searching (2)

After constructing our suffix array we have the table suftab which gives us in sorted
order the suffixes of S. Suppose now we want to find all instances of a string
P = p1, ... , pm of length m < n in S.

Let

LP = min{k : P ≤m S suftab [k] or k = n + 1}

and

RP = max{k : S suftab [k] ≤m P or k = 0}.

Since suftab is in ≤m order, it follows that P matches a suffix Si if and only if
i = suftab [k] for some k ∈ [LP , RP]. Hence a simple binary search can find LP and
RP . Each comparison in the search needs O(m) character comparisons, and hence
we can find all instances in the string in time O(m log n).

7014

Searching (3)

This is the simple code piece to search fo LP .
1 if P ≤m S suftab [1]
2 then LP = 1;
3 else if P >m S suftab [n]
4 then LP = n + 1;
5 else
6 (L, R) = (1, n);
7 while R − L > 1 do
8 M = d(L + R)/2e;
9 if P ≤m S suftab [M]

10 then R = M;
11 else L = M;
12 fi
13 od
14 LP = R;
15 fi
16 fi

7015

Searching (4)

For example if we search for P = aca in the text S = acaaacatat$ then LP = 3
and RP = 4. We find the value LP and RP respectively, by setting (L, R) to (1, n)
and changing the borders of this interval based on the comparison with the suffix at
position d(L + R)/2e e.g. we find LP with the sequence: (1, 11)⇒ (1, 6)⇒ (1, 4)⇒
(1, 3)⇒ (2, 3). Hence LP = 3.

1 aaacatat$
2 aacatat$
3 acaaacatat$
4 acatat$
5 atat$
6 at$
7 caaacatat$
8 catat$
9 tat$

10 t$
11 $

7016

Searching (5)

The binary searches each need O(log n) steps. In each step we need to compare m
characters of the text and the pattern in the ≥m operations. This leads to a running
time of O(m log n).

Can we do better?

While the binary search continues, let L and R denote the left and right boundaries
of the current search interval. At the start, L equals 1 and R equals n. Then in each
iteration of the binary search a query is made at location M = d(R + L)/2e of suftab .

We keep track of the longest prefixes of S suftab (L) and S suftab (R) that match a prefix
of P. Let l and r denote the prefix lengths respectively and let mlr = min(l , r).

7017

Searching (6)

Then we can use the value mlr to accelerate the lexicographical comparison of P
and the suffix S suftab [M]. Since suftab is ordered, it is clear that all suffixes between
L and R share the same prefix. Hence we can start the first comparison at position
mlr + 1.

In practice this trick already brings the running time to O(m + log n) in most cases,
however one can construct examples that still need time O(m · log n) (exercise).

7018

Searching (7)

We call an examination of a character of P redundant if that character has been ex-
amined before. The goal is to limit the number of redundant character comparisons
to O(1) per iteration of the binary search.

7019

Searching (8)

The use of mlr alone does not suffice: In the case that l 6= r , all characters in P
from mlr + 1 to max(l , r) will have already been examined. Thus all comparisons to
these characters are redundant. We need a way to begin the comparisons at the
maximum of l and r .

To do this we introduce the following definition.
Definition 3. lcp (i , j) is the length of the longest common prefix of the suffixes
specified in positions i and j of suftab .

For example for S = aabaacatat the lcp (1, 2) is the length of the longest common
prefix of aabaacata and aacata which is 2.

With the help of the lcp information, we can achieve our goal of one redundant
character comparison per iteration of the search. For now assume that we know
lcp (i , j),∀i , j .

7020

Searching (9)

How do we use the lcp information? In the case of l = r we compare P to suftab [M]
as before starting from position mlr + 1, since in this case the minimum of l and r is
also the maximum of the two and no redundant character comparisons are made.

If l 6= r , there are three cases. We assume w.l.o.g. l > r .

7021

Searching (10)

Case 1: lcp (L, M) > l .
Then the common prefix of the suffixes S suftab [L] and S suftab [M] is longer than the
common prefix of P and S suftab [L].

Therefore, P agrees with the suffix S suftab [M] up through character l . Or to put it
differently, characters l +1 of S suftab [L] and S suftab [M] are identical and lexically less
than character l + 1 of P.

Hence any possible starting position must start to the right of M in suftab . So in this
case no examination of P is needed. L is set to M and l and r remain unchanged.

7022

Searching (11)

Case 2: lcp (L, M) < l .
Then the common prefix of suffix suftab [L] and suftab [M] is smaller than the com-
mon prefix of suftab [L] and P.

Therefore P agrees with suftab [M] up through character lcp (L, M). The lcp (L, M)+
1 characters of P and and suftab [L] are identical and lexically less than the charac-
ter lcp (L, M) + 1 of suftab [M].

Hence any possible starting position must start left of M in suftab . So in this case
again no examination of P is needed. R is set to M, r is changed to lcp (L, M), and
l remains unchanged.

7023

Searching (12)

Case 3: lcp (L, M) = l .
Then P agrees with suftab [M] up to character l . The algorithm then lexically com-
pares P to suftab [M] starting from position l + 1. In the usual manner the outcome
of the compare determines which of L and R change along with the corresponding
change of l and r .

7024

Searching (13)

Case 1: lcp (L, M) > l . Case 2: lcp (L, M) < l . Case 3: lcp (L, M) = l .

Illustration of the three cases

case 1) case 2) case 3)

P = a b c d e m n P = a b c d e m n P = a b c d e m n

lcp(L,M) lcp(L,M) lcp(L,M)

l l l

L -> a b c d e f g.... L -> a b c d e f g... L -> a b c d e f g....

M -> a b c d e f g.... M -> a b c d g g.... M -> a b c d e g....

R -> a b c w x y z.... R -> a b c w x y z... R -> a b c w x y z....

r r r

7025

Searching (14)

Then the following theorem holds:
Theorem 4. Using the lcp values, the search algorithm does at most O(m + log n)
comparisons and runs in that time.

Proof: Exercise. Use the fact that neither l nor r decrease in the binary search, and
find a bound for the number of redundant comparisons per iteration of the binary
search.

7026

Computing the lcp values

We now know how to search fast in a suffix array under the assumption, that we
know the lcp values for all pairs i , j .

But how do we compute the lcp values? And which ones? Computing them all
would require too much time and, worse, quadratic space!

We will now first dicuss, which lcp values we really need, and then how to compute
them. For the computation give in more detail a newer, simple O(n) algorithm to
compute the lcp values given the suffix array suftab .

In the appendix we also sketch Myers’ proposal for computing the lcp values during
the construction of the suffix array.

7027

Computing the lcp values (2)

We first observe that indeed we only need the lcp values of L and R that we en-
counter in the binary search for LP and RP . However, the set of pairs (i , j) which
can be considered is contained in a binary search tree which does not depend on
P, and has linear size.
Observation 5. Only O(n) many lcp values are needed for the lcp based search
in a suffix array.

Example: n = 9

(1,9)

(1,5) (5,9)

(1,3) (3,5) (5,7) (7,9)

(1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9)

7028

Computing the lcp values (3)

We get those values in a two step procedure:

1. Compute the lcp values for pairs of suffixes adjacent in suftab using an array
height of size n.

2. For the fixed binary search tree used in the search for LP and RP compute the
lcp values for its internal nodes using the array height . (exercise *)

(*) The value at an internal node is the minimum of its successors (why?)

Hence the essential thing to do is to compute the array height , i.e. the lcp values
of adjacent suffixes in suftab .

7029

The Kasai et al. algorithm

An elegant, short algorithm for computing the height array in linear time is due to
Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park (pre-
sented at CPM 2001).

The array height is defined by

height (k) = lcp (S suftab [k−1], S suftab [k]) .

That is, it contains the lcp values of all adjacent suffixes in the suffix array suftab .

We can compute the lcp values contained in the binary search tree in linear time
and space, once we have height values.

The Kasai et al. algorithm uses the inverse of the suffix array, that is, the array
sufinv with the defining property

sufinv [suftab [i]] = i .

Clearly, sufinv can be computed in one linear scan over suftab , if it is not available
yet.

7030

The Kasai et al. algorithm (2)

It is important to keep the “semantics” of suftab and sufinv in mind. Perhaps the
following diagram is useful:

sufinv [i] = j ⇔ Suffix Si has rank j
in lexicographic order

m m

suftab [j] = i ⇔ j-th lowest Suffix in
lexicographic order is Si

7031

The Kasai et al. algorithm (3)

The algorithm computes the height values of the suffixes Si in order of decreasing
length. Thus the main loop runs over i = 1, ... , n.

Let p := sufinv (i). The height value for Si depends on Si and its predecessor in
suftab ; we have

height (p) = lcp (S suftab (p−1), S suftab (p)) = lcp (Sk , Si) ,

with k := suftab (p − 1).

i suftab [i]
p − 1 k

p i

7032

The Kasai et al. algorithm (4)

The algorithm keeps track of the last height value computed, h. Initially, we have
h = 0. Then height (p) is computed in the straight-forward way:

1 while S[i + h] = S[k + h] do
2 h++;
3 od
4 height [sufinv [i]] = h;

From now on, we assume that the last h has been computed correctly.

7033

The Kasai et al. algorithm (5)

Now the algorithm proceeds to Si+1.

But in fact height (sufinv (i)) and height (sufinv (i + 1)) are closely related. Namely,
if h = height (sufinv (i)) > 0, then

lcp (Si , S suftab [sufinv [i]−1]) = h > 0

and hence,

lcp (Si+1, S suftab [sufinv [i]−1]+1) = h − 1 .

Moreover,

Si ≥lex. S suftab [sufinv [i]−1]

implies

Si+1 ≥lex. S suftab [sufinv [i]−1]+1 ,

because the first letters were the same.

7034

The Kasai et al. algorithm (6)

Now, how does this relate to height (sufinv (i + 1)) ?

Let p′ := sufinv (i + 1). By the preceeding observation, we have found a position
q′ < p′ such that

lcp (S suftab [q′], S suftab [p′]) ≥ h − 1 ,

namely, q′ := sufinv [suftab [sufinv [i] − 1] + 1]. But we cannot assert that q′ is the
immediate predecessor of p′.

i suftab [i]
p − 1 k k = suftab [sufinv [i]− 1]

p i p = sufinv [i]
......

q′ k + 1 q′ = sufinv [suftab [sufinv [i]− 1] + 1]
... (maybe q′ < p′ − 1)

p′ i + 1 p′ = sufinv [i + 1]
7035

The Kasai et al. algorithm (7)

Yet the following observation helps. We have

h − 1 ≤ lcp (S suftab [q′], S suftab [p′])

= min
k ′∈[q′,p′−1]

lcp (S suftab [k], S suftab [k+1])

≤ lcp (S suftab [p′−1], S suftab [p′])

= height (p′) .

In other words, the next height value to be computed (belonging to Si+1) is at most
one less than the preceeding one (belonging to Si).

7036

The algorithm

The following algorithm computes the array height following the above discussion
in time O(n):

1 GetHeight(S, suftab)
2 for i = 1 to n do
3 sufinv [suftab [i]] = i ;
4 od
5 h = 0;
6 for i = 1 to n do
7 if sufinv [i] > 1
8 then
9 k = suftab [sufinv [i]− 1];

10 while S[i + h] = S[k + h] do
11 h++;
12 od
13 height [sufinv [i]] = h;
14 if h > 0 then h = h − 1; fi
15 fi
16 od

7037

The algorithm (2)

The above algorithm uses only linear time. In the loop in line ?? we iterate from 1
to n. In the loop is a while loop in line ?? that increases the height (i.e. the lcp
value of adjacent suffixes). Since the height is maximally n and since in line ?? we
decrease h by at most 1 per iteration of the main loop, it follows that the while loop
can increase h at most 2n times in total.

7038

Example

The example was prepared using Stefan Kurtz’s programs mkvtree and
vstree2tex, see www.vmatch.de. (Sorry for index shifts!)

i suftab [i] height [i] S suftab [i]
0 2 aaacatat$

1 3 aacatat$

2 0 1 acaaacatat$

3 4 acatat$

4 6 atat$

5 8 at$

6 1 caaacatat$

7 5 catat$

8 7 tat$

9 9 t$

10 10 $

i sufinv [i] Si
0 ∗ 2 acaaacatat$

1 6 caaacatat$

2 0 aaacatat$

3 1 aacatat$

4 3 acatat$

5 7 catat$

6 4 atat$

7 8 tat$

8 5 at$

9 9 t$

10 10 $

i = 0: sufinv [i] = 2, k = suftab [sufinv [i]− 1] = suftab [1] = 3. We compare S0 and
S3 and get height [2] = 1.

7039

Example (2)

i suftab [i] height [i] S suftab [i]
0 2 aaacatat$

1 3 aacatat$

2 0 1 acaaacatat$

3 4 acatat$

4 6 atat$

5 8 at$

6 1 0 caaacatat$

7 5 catat$

8 7 tat$

9 9 t$

10 10 $

i sufinv [i] Si
0 2 acaaacatat$

1 ∗ 6 caaacatat$

2 0 aaacatat$

3 1 aacatat$

4 3 acatat$

5 7 catat$

6 4 atat$

7 8 tat$

8 5 at$

9 9 t$

10 10 $

i = 1: sufinv [i] = 6, k = suftab [sufinv [i]− 1] = suftab [5] = 8. We compare S1 and
S8 and get height [6] = 0.

7040

Example (3)

i suftab [i] height [i] S suftab [i]
0 2 -/- aaacatat$

1 3 aacatat$

2 0 1 acaaacatat$

3 4 acatat$

4 6 atat$

5 8 at$

6 1 0 caaacatat$

7 5 catat$

8 7 tat$

9 9 t$

10 10 $

i sufinv [i] Si
0 2 acaaacatat$

1 6 caaacatat$

2 ∗ 0 aaacatat$

3 1 aacatat$

4 3 acatat$

5 7 catat$

6 4 atat$

7 8 tat$

8 5 at$

9 9 t$

10 10 $

i = 2: sufinv [i] = 0. There is no height value in the first row.

7041

Example (4)

i suftab [i] height [i] S suftab [i]
0 2 aaacatat$

1 3 2 aacatat$

2 0 1 acaaacatat$

3 4 acatat$

4 6 atat$

5 8 at$

6 1 0 caaacatat$

7 5 catat$

8 7 tat$

9 9 t$

10 10 $

i sufinv [i] Si
0 2 acaaacatat$

1 6 caaacatat$

2 0 aaacatat$

3 ∗ 1 aacatat$

4 3 acatat$

5 7 catat$

6 4 atat$

7 8 tat$

8 5 at$

9 9 t$

10 10 $

i = 3: sufinv [i] = 1, k = suftab [sufinv [i]− 1] = suftab [0] = 2. We compare S3 and
S2 and get height [1] = 2.

7042

Example (5)

i suftab [i] height [i] S suftab [i]
0 2 aaacatat$

1 3 2 aacatat$

2 0 1 acaaacatat$

3 4 3 acatat$

4 6 atat$

5 8 at$

6 1 0 caaacatat$

7 5 catat$

8 7 tat$

9 9 t$

10 10 $

i sufinv [i] Si
0 2 acaaacatat$

1 6 caaacatat$

2 0 aaacatat$

3 1 aacatat$

4 ∗ 3 acatat$

5 7 catat$

6 4 atat$

7 8 tat$

8 5 at$

9 9 t$

10 10 $

i = 4: sufinv [i] = 3, k = suftab [sufinv [i]− 1] = suftab [2] = 0. We compare S4 and
S0. We start at h = lcp (S3, S2) − 1 = 1. Observe that S4 > S0 > S3 in lex. order.
We get height [3] = 3.

7043

Example (6)

i = 5: sufinv [i] = 7. We can skip the first height [3] − 1 = 3 − 1 = 2 letters from
comparison. [. . .]

The final result is:

i suftab [i] height [i] S suftab [i]
0 2 aaacatat$

1 3 2 aacatat$

2 0 1 acaaacatat$

3 4 3 acatat$

4 6 1 atat$

5 8 2 at$

6 1 0 caaacatat$

7 5 2 catat$

8 7 0 tat$

9 9 1 t$

10 10 0 $

i sufinv [i] Si
0 2 acaaacatat$

1 6 caaacatat$

2 0 aaacatat$

3 1 aacatat$

4 3 acatat$

5 7 catat$

6 4 atat$

7 8 tat$

8 5 at$

9 9 t$

10 10 $

7044

Computing the lcp values (7)

Our overall strategy for constructing and searching a suffix array could then be as
follows:

• Construct the suffix array for S in time O(n log n). (Linear time constructions
are possible)

• Compute the height array (for adjacent positions) in linear time.

• Precompute the search tree for the binary search and annotate its internal
nodes with lcp values in time O(n). (exercise)

• Support O(log n + m) queries by adapting the searches for LP and RP .

7045

Summary

• Suffix arrays are a space efficient alternativ to suffix trees.

• They can be built in time O(n log n).

• Simple searches can be conducted in time O(m log n). However the simple mlr
heuristic perofrms already well in practice (time O(m + log n).

• The lcp values can be computed in linear time, given a suffix array.

• Using the lcp values the search in suffix arrays can be speeded up to O(m +
log n).

7046

Appendix: Manber-Myers algorithm

7047

Manber-Myers algorithm (2)

The Manber-Myers algorithm stores the result in the table suftab and, in addition,
uses in another array Bh of boolean values to demarcate the partitioning of the
suffix array into buckets. Each bucket initially holds the suffixes with the same first
symbol.

The algorithm uses some auxiliary boolean tables. These are stored as higher-
order bits in the other tables and thus do not require additional memory allocation.
However, the range of feasible n is reduced to 231 if this implementation technique
is used.

The algorithm needs (essentially) 8n bytes and runs in O(n log n) time.

7048

Manber-Myers algorithm (3)

[PST07]
7049

Manber-Myers algorithm (4)

Attention: There is an index shift in the following presentation, suftab starts at
position 0.

7050

Manber-Myers algorithm (5)

If we look at the example acbaacatat$, we have the following after stage 1 (extra
space separates the h-buckets):

i Bh [i] suftab [i]

0 1 0=acbaacatat$
1 0 3=aacatat$
2 0 4=acatat$
3 0 6=atat$
4 0 8=at$

5 1 2=baacatat$

6 1 1=cbaacatat$
7 0 5=catat$

8 1 7=tat$
9 0 9=t$

10 1 10=$

7051

Manber-Myers algorithm (6)

The idea is now the following: Let Si be the first suffix in the first bucket (i.e.
suftab [0] = i), and consider Si−h.

Since Si starts with the smallest h-symbol string, Si−h should be the first in its 2h
bucket. Hence we move Si−h to the beginning of its bucket and mark this fact.
Remember this:

The algorithm scans the suffixes Si as they appear in ≤h-order. For each
Si , it moves Si−h to the next available place in its h-bucket.

7052

Manber-Myers algorithm (7)

Altogether, we maintain three integer arrays suftab , sufinv and count , and two
boolean arrays Bh and B2h , all with n + 1 elements.

At the start of stage h, suftab [i] contains the start position of the i-th smallest suffix
(according to the first h symbols).

sufinv [i] is the inverse of suftab, i. e.

suftab [sufinv [i]] = i .

Bh [i] is 1 iff suftab [i] contains the leftmost suffix of an h-bucket.

(The actual implementation of count , Bh , and B2h uses bits and currently unused
entries from suftab and sufinv .)

7053

Manber-Myers algorithm (8)

If we look at the example acbaacatat$, we have the following:

i Bh [i] sufinv [i] suftab [i]

0 1 0 0=acbaacatat$
1 0 6 3=aacatat$
2 0 5 4=acatat$
3 0 1 6=atat$
4 0 2 8=at$

5 1 7 2=baacatat$

6 1 3 1=cbaacatat$
7 0 8 5=catat$

8 1 4 7=tat$
9 0 9 9=t$

10 1 10 10=$

7054

Manber-Myers algorithm (9)

In stage 2h we reset sufinv [i] to point to the leftmost cell of the h-bucket containing
the i-th suffix, rather than to the suffix’s precise place in the bucket. In our example
we get:

i Bh [i] sufinv [i] suftab [i]

0 1 0 0=acbaacatat$
1 0 6 3=aacatat$
2 0 5 4=acatat$
3 0 0 6=atat$
4 0 0 8=at$

5 1 6 2=baacatat$

6 1 0 1=cbaacatat$
7 0 8 5=catat$

8 1 0 7=tat$
9 0 8 9=t$

10 1 10 10=$
7055

Manber-Myers algorithm (10)

In each doubling step, suftab is scanned in increasing order, one bucket at a time.
Let l and r mark the left and right boundary of the h-bucket currently being scanned.
For every l ≤ i ≤ r , we do the following:

1. Let Ti := suftab [i]− h. (If Ti is negative we do nothing.)

2. Increment count [sufinv [Ti]].

3. Set sufinv [Ti] = sufinv [Ti] + count [sufinv [Ti]]− 1.

4. Mark this by setting B2h [sufinv [Ti]] to 1.

Now sufinv [i] is correct with respect to ≤2h. The old ≤h-ordering is still available
in suftab . The suftab is updated at the end of the 2h stage. In the following
example, we show the future positions of the suffixes a field new st (not used by the
algorithm).

7056

Manber-Myers algorithm (11)

We indicate the current position with a “*”. The auxiliary array count is initialized to
0 for all i . After the initialization:

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
* 0 1 0 0 0 0=acbaacatat$

1 0 0 0 6 3=aacatat$
2 0 0 0 5 4=acatat$
3 0 0 0 0 6=atat$
4 0 0 0 0 8=at$
5 1 0 0 6 2=baacatat$
6 1 0 0 0 1=cbaacatat$
7 0 0 0 8 5=catat$
8 1 0 0 0 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

Nothing happens since 0− 1 < 0.

7057

Manber-Myers algorithm (12)

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
0 1 0 0 0 0=acbaacatat$

* 1 0 0 0 6 3=aacatat$
2 0 0 0 5 4=acatat$
3 0 0 0 0 6=atat$
4 0 0 0 0 8=at$
5 1 1 1 6 5 2=baacatat$
6 1 0 0 0 1=cbaacatat$
7 0 0 0 8 5=catat$
8 1 0 0 0 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

S2 is moved to the front of its bucket, i. e. it stays were it is: T1 = 2 and sufinv [2] = 5,
hence increment count [5], set sufinv [2] = 5 + count [5]− 1 = 5, and B2h [5] = 1.

7058

Manber-Myers algorithm (13)

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
0 1 1 1 0 0=acbaacatat$
1 0 0 0 6 0 3=aacatat$

* 2 0 0 0 5 4=acatat$
3 0 0 0 0 6=atat$
4 0 0 0 0 8=at$
5 1 1 1 6 5 2=baacatat$
6 1 0 0 0 1=cbaacatat$
7 0 0 0 8 5=catat$
8 1 0 0 0 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

S3 is moved to the front of its bucket, i. e. to position 0: T2 = 3 and sufinv [3] = 0,
hence increment count [0], set sufinv [3] = 0 + count [0]− 1 = 0, and B2h [0] = 1.

7059

Manber-Myers algorithm (14)

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
0 1 1 1 0 0=acbaacatat$
1 0 0 0 6 0 3=aacatat$
2 0 0 0 5 4=acatat$

* 3 0 0 0 0 6=atat$
4 0 0 0 0 8=at$
5 1 1 1 6 5 2=baacatat$
6 1 1 1 0 1=cbaacatat$
7 0 0 0 8 6 5=catat$
8 1 0 0 0 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

S5 is moved to the front of its bucket, i. e. to position 6: T3 = 5 and sufinv [5] = 6,
hence increment count [6], set sufinv [5] = 6 + count [6]− 1 = 6, and B2h [6] = 1.

7060

Manber-Myers algorithm (15)

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
0 1 1 1 0 0=acbaacatat$
1 0 0 0 6 0 3=aacatat$
2 0 0 0 5 4=acatat$
3 0 0 0 0 6=atat$

* 4 0 0 0 0 8=at$
5 1 1 1 6 5 2=baacatat$
6 1 1 1 0 1=cbaacatat$
7 0 0 0 8 6 5=catat$
8 1 1 1 0 8 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

S7 is moved to the front of its bucket, i. e. to position 8: T4 = 7 and sufinv [7] = 8,
hence increment count [8], set sufinv [7] = 8 + count [8]− 1 = 8, and B2h [8] = 1.

7061

Manber-Myers algorithm (16)

Now we have scanned the first bucket. Next we scan the bucket again, find all
moved suffixes in all buckets and update the B2h bitvector so that it points only to
the leftmost positions of the 2h-buckets.

To do that B2h is set to false in the interval [sufinv [a] + 1, b − 1] where a is every
position marked in B2h and

b = min
{
j : j > sufinv [a] and(Bh [j] or not B2h [j])

}
.

It is clear that the left border preserves the leftmost bit set. The definition of the right
border prevents us from resetting a border of an adjacent 2h bucket, but ensures
the cancelling of all unwanted bits.

7062

Manber-Myers algorithm (17)

In our example nothing happens, since all moved suffixes were put at the begin-
ning of a new bucket. This scan updates the sufinv and B2h tables and makes
them consistent with the ≤2h order. At the end of each stage after all buckets are
scanned, we update the suftab array using the sufinv array:

For all i : suftab [sufinv [i]] := i .

The next step shows that indeed the order of S1 and S5 is changed. S5 was investi-
gated during the scan of the first bucket and put to the beginning of its ≤2h-bucket.
Also, the B2h vector changes now in the second scanning step.

7063

Manber-Myers algorithm (18)

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
0 1 1 1 0 0=acbaacatat$
1 0 0 0 7 0 3=aacatat$
2 0 0 0 5 4=acatat$
3 0 0 0 0 6=atat$
4 0 0 0 0 8=at$

* 5 1 1 1 6 5 2=baacatat$
6 1 1 2 0 7 1=cbaacatat$
7 0 1 0 8 6 5=catat$
8 1 1 1 0 8 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

Now S1 is put at the second position of its bucket: T5 = 1 and sufinv [1] = 6, hence
increment count [6], set sufinv [1] = 6 + count [6]− 1 = 7, and B2h [7] = 1.

7064

Manber-Myers algorithm (19)

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
0 1 1 2 1 1 0=acbaacatat$
1 0 1 0 7 0 3=aacatat$
2 0 0 0 5 4=acatat$
3 0 0 0 0 6=atat$
4 0 0 0 0 8=at$
5 1 1 1 6 5 2=baacatat$

* 6 1 1 2 0 7 1=cbaacatat$
7 0 1 0 8 6 5=catat$
8 1 1 1 0 8 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

Now S0 is put at the second position of the first bucket: T6 = 0 and sufinv [0] = 0,
hence increment count [0], set sufinv [0] = 0 + count [0]− 1 = 1, and B2h [1] = 1.

7065

Manber-Myers algorithm (20)

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
0 1 1 3 1 1 0=acbaacatat$
1 0 1 0 7 0 3=aacatat$
2 0 1 0 5 2 4=acatat$
3 0 0 0 0 6=atat$
4 0 0 0 2 8=at$
5 1 1 1 6 5 2=baacatat$
6 1 1 2 0 7 1=cbaacatat$

* 7 0 1 0 8 6 5=catat$
8 1 1 1 0 8 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

Now S4 is put at the third position of the first bucket: T7 = 4 and sufinv [4] = 0,
hence increment count [0], set sufinv [4] = 0 + count [0] − 1 = 2, and B2h [2] = 1.
The bucket is finished. We scan it again to update B2h. B2h [2] is set to 0, since
two suffixes with second character c were moved, but B2h should only mark the
beginning of the 2h-bucket.

7066

Manber-Myers algorithm (21)

The construction shown can clearly be done in time O(n log n) and O(n) space. In
the original paper Myers describes a small modification of the construction phase
which leads to an O(n) expected time algorithm at the expense of another n bytes.

The idea is to store for all suffixes Si their prefixes of length T = blog|Σ| nc as T−digit
radix-| Σ | numbers.

Then instead of performing the radix sort on the first symbol of the suffixes, we
perform it on this array, which can be done in time O(n) since our choice of T
guarantees that all integers are less than n. Hence the base case of the sort has
been extended from 1 to T .

It can be shown that in the expected case there is only a constant number of addi-
tional rounds that need to be performed.

7067

Appendix: Computing the lcp values along with the MM algorithm

This can be done during the construction of the suffix array, without additional over-
head, or alternatively in linear time with a scan over the suffix array.

In Myers’ algorithm the computation of the lcp values can be done during the con-
struction of the suffix array without additional time overhead and with an additional
n+1 integers. The key idea is the following. Assume that after stage h of the sort we
know the lcp s between suffixes in adjacent buckets (after the first stage, the lcp s
between suffixes in adjacent buckets are 0).

At stage 2h the buckets are partitioned according to 2h symbols. Thus, the lcp s
between suffixes in newly adjacent buckets must be at least h and at most 2h − 1.
Furthermore if Sp and Sq are in the same h-bucket, but in distinct 2h-buckets, then

lcp (Sp, Sq) = h + lcp (Sp+h, Sq+h) and lcp (Sp+h, Sq+h) < h.

7068

Computing the lcp values (2)

The problem is that we only have the lcp s between suffixes in adjacent buckets, and
Sp+h and Sq+h may not be in adjacent buckets. However, if S suftab [i] and S suftab [j]
with i < j have an lcp less than h and suftab is in ≤h order, then their lcp is
the minimum of the lcp s of every adjacent pair of suffixes between suftab [i] and
suftab [j]. That is

lcp (S suftab [i], S suftab [j]) = min
k∈[i ,j−1]

{ lcp (S suftab [k], S suftab [k+1]}

7069

Computing the lcp values (3)

Using the above formula to compute the lcp values directly would require too much
time. And maintaining the lcp for every pair of suffixes would require too much
space.

By using a balanced tree that records the minimum pairwise lcp s over a collection
of intervals of the suffix array, we can determine the lcp between any two suffixes in
O(log n) time (which is sufficient for Myer’s online construction).

Since there are only n internal leaves in the tree, for which the lcp has to be com-
puted, we spend a total of O(n log n) time to precompute the lcp values.

7070

