
Repeat resolution
This exposition is based on the following sources, which are all recommended read-
ing:

1. Separation of nearly identical repeats in shotgun assemblies using defined nu-
cleotide positions, DNPs, Tammi et al, Bioinformatics 2002

2. Correcting errors in shotgun sequences, Tammi et al, Nucleic acids research,
2003

3. DNPTrapper: an assembly editing tool for finishing and analysis of complex
repeat regions, Arner et al, BMC Bioinformatics, 2005

4. Separating repeats in DNA sequence assembly, Kececioglu and Yu, RECOMB
2001
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Problem definition

The main problem in sequence assembly is the handling of repeats. Usually as-
sembly algorithms concentrate first on the localization and assembly of stretches of
unique sequence.

The handling of repeats is always a problem and not solved rigourously in most
programs. The problem is that different instances of repetitive sequence in the
genome differ only slightly (0.1 − 3%), such that they are impossible to distinguish
from sequencing reads in the computation of pairwise overlaps.

In this lecture we formalize the problem of repeat resolution and show a statistical
method to find signals that point to differences that are due to repeats and not due
to sequencing errors.
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Problem definition (2)

Assume we have collected a set of pairwise overlapping fragments and formed a
multialignment with them (i.e. a contig).

The presented method is based upon the fact that errors in a repetitive contig and
the errors in a non-repetitive contig are differently distributed. In a non-repetitive
contig errors in overlaps can be explained by sequencing errors which should occur
independently from each other in each read.

In contrast to this, repetitive contigs by definition consist of reads that are from
instances of a repeat from different genomic locations. Depending on the nature of
a repeat, two instances differ from each other by a certain amount.
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Problem definition (3)

The following figure shows sequencing errors (in red) and microheterogeneity of a
collapsed repeat (in blue).

The columns in blue are called separating columns (by Kececioglu) or Defined Nu-
cleotide Positions (DNPs) by Tammi. It is clear that these positions can be used to
a) determine, whether there is a compressed repeat, and b) to resolve the compres-
sion into the different repeat copies.
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Problem definition (4)

There is a number of algorithmic problems one has to address in repeat resolution:

1. Locating the positions in the layout where there is a possible compression due
to repeats.

2. Bounding the region for the analysis of DNPs.

3. Identifying the DNPs.

4. Separating the set of fragments into subsets belonging to different instances of
a repeat.
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Problem definition (5)

We will concentrate on the third and fourth point and quickly go over the first two.

Locating the region can be done by using statistical test involving the coverage in a
layout (see for example the arrival statistic from the assembly script), or by exmaning
divergent overlaps.

For bounding the region of analysis we introduce a reasonable approach choosen
by Tammi. They choose a seed read and form a multi-alignment using all 1st order
and 2nd order overlaps. The alignment is optimizied using the program Realigner
to remove hopefully most of the alignment errors.

10005



Problem definition (6)

The next picture shows this procedure.
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Finding DNPs

After the multialignment is computed we want to determine the DNPs. To do this
both, Kececioglu and Tammi, propose a simple method.

For Kececioglu a candidate separating column in an alignment of depth d is one
in which a pair of rows agrees on a character with frequency at most bd/2c. A
candidate column is supported by another column if they are candidates on the
same pair of rows. The number t of mutually supporting columns is the support of
the separating column.
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Finding DNPs (2)

Tammi has a similar approach except that they do not require only a pair of posi-
tions for support but Dmin many positions. However, they need only one column for
support.

These approaches work reasonable well, however they neglect one important piece
of information available, the quality values for a sequence read. Recall that the
quality values encode the probability that the base is indeed correct. Tammi at all
adress this case, although in a limited fashion.
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Definitions

Consider two fixed positions u and v in an alignment. All definitions for u are similar
for v .

Let au,j be the base at position u in for the j-th sequence. Let Iu,j be the indicator
for the event that the base at position u of the read j deviates from consensus. If
this is the case, the variable is 1 otherwise 0. The total number of deviations from
consensus at position u is Nu =

∑k
j=1 Iu,j .

Let Ij = Iu,j Iv ,j be the indicator for a coincidence in the j-th sequence. Finally,
C =

∑k
j=1 Ij is the total number of coincidences.

The authors then assume independence of the deviation from consensus which is
clearly not always true but yields an approximation.
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An exact formula

Tammi derives the distribution of C given the observed values Nu = nu and Nv =
nv . They argue that an exact formula is very complicated if the error probabilities
are unevenly distributed. However, if one assumes that pu,1 = · · · = pu,k and
pv ,1 = · · · = pv ,k , then one can apply standard combinatorics to derive that C given
Nu and Nv is hypergeometrically distributed with parameters k , nu, and nv/k . Or
written differently:

P(C = x) =

(
nv
x

)(
k−nv
nu−x

)
(

k
nu

) ,

0 ≤ x ≤ nv , 0 ≤ nu − x ≤ k − nv .
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An exact formula (2)

This is true, since when all ps are identical, each possible configuration has equal
probability.

By considering the nv deviations from the consensus in position v as fixed, the
denominator above gives the total number of ways to distribute nu deviations among
k sites, and the numerator the number of ways to do this resulting in x coincidences.

As a reminder: the standard definition of a hypergeometric distribution is: In a bucket
are N balls, M of which are white and N −M are black. If you draw n balls without
returning them, then the probability that you have k white balls is:

Pk (N, M, n) =

(
M
k

)(
N−M
n−k

)
(

N
n

) ,
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An exact formula (3)

So the conditional distribution is easy to compute if all ps are equal, which they are
not. Hence Tammi argues now as follows: Since all values of p are quite small,
the unconditional distribution of C is well approximated by a Poisson distribution. In
addition, the conditioning on Nu and Nv only introduces weak dependencies, which
implies that the Possion approximation should still be satisfactory.

Hence we have to compute the mean parameter of the Poisson distribution E(C |
Nu = nu, NV = nv ).
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The Possion approximation

From the definition of C follows:

E(C | Nu = nu, NV = nv ) =
k∑

j=1
E(Iu,j = 1 | Nu = nu)E(Iv ,j = 1 | Nv = nv ).

Furthermore it holds:

P(Iu,j = 1 | Nu = nu) =
P(Iu,j = 1, Nu = nu)

P(Nu = nu)

=
P(Iu,j = 1, N(j)

u = nu − 1)

P(Iu,j = 1, N(j)
u = nu − 1) + P(Iu,j = 0, N(j)

u = nu)

where N(j) = Nu− Iu,j denotes the total number of deviations from consensus at site
u excluding read j .
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The Possion approximation (2)

Note that Iu,j and N(j)
u are independent. Furthermore Nu and N(j)

u are approximately

Possion distributed. Let λu =
∑

i=1 pu,i and λ(j)
u = λu − pu,j , respectively, denote the

means of those distributions. It follows that

P(Iu,j = 1, N(j)
u = nu − 1)

P(Nu = nu)
is approximately

(
pu,je

−λ(j)
u λ

(j)nu−1
u /(nu − 1)!

)
/

(
pu,je

−λ(j)
u λ

(j)nu−1
u /(nu − 1)! + (1− pu,j)e

−λ(j)
u λ

(j)nu
u /nu!

)
10014



The Possion approximation (3)

This becomes approximately

P(Iu,j = 1, N(j)
u = nu − 1)

P(Nu = nu)
≈

nupu,j

nupu,j + λ(j)
u (1− pu,j)

.

A corresponding result applies to P(Iv ,j = 1 | Nv = nv ) and we conclude that
E(C | Nu = nu, NV = nv ) is approximately

k∑
j=1

 nupu,j

nupu,j + λ(j)
u (1− pu,j)

×
nvpv ,j

nvpv ,j + λ(j)
v (1− pv ,j)

 .

10015



The Possion approximation (4)

Hence, the suggested approximation of the distribution of C given Nu = nu and
Nv = nv , is to approximate it with the Poisson dsitribution having the mean specified
above.

This again implies that the hypothesis that coincidences occur by chance rather than
for systematic reasons can be tested by comparing the observed values of cobs with
what to expect from the derived approximate distribution.
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The Possion approximation (5)

We compute pcorr = 1−
∑cobs−1

i=0 po(i), where po(i) is the probability function for the
above Possion variable with mean E(C | Nu = nu, NV = nv ). pcorr is the probability
of observing cobs or more coincidences between columns u and v . The hypothesis
is accepted if pcorr is greater than Pcorr

max .

(If there are columns with a large number of differences Tammi gives a possible
correction.)
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Results of Tammis methods

In order to evaluate the method, five sets of simulations were performed. Real
quality value files from shotgun data was used and for those repeats were artifically
introduced, namely of length 1000, 2000, 3000 bases repeated 4, 6, 8 and 10 times
in tandem.

The first three sets of simulations differ only in the amount of sequencing error (via
quality trimming). The average error rates are 4.3, 3.3 and 2.6 percent, respectively.
Set 4 and 5 each have an average quality of 2.6 and differ in the coverage.
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Results of Tammis methods (2)

First we look at the separation power of the number of observed deviations from
consensus and plot those caused by sequencing errors together with those caused
by real differences. (Data for one of the test sets).
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Results of Tammis methods (3)

Now we look at the separation power of the number of observed coincidences and
plot those caused by sequencing errors together with those caused by real differ-
ences.
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Results of Tammis methods (4)

As expected, it is not sufficient to look only at single columns in the sequence align-
ment, whereas for coincidences the distributions are clearly separated for Dmin > 2.

Next we look at the error rate (i.e. how often die I call a DNPs when it was not
a DNP) and the sensitivity (How many of the real DNPs did I find) of the different
situations (ignore the value ST ).
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Results of Tammis methods (5)

Here the error rate and sensitivity of Tammi’s basic method.
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Results of Tammis methods (6)

We look now at the error rate and sensitivity of Tammi’s extended method first.
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Separating repeat copies

Now we have identified a number of DNPs. How do we use them to separate the
reads into groups belonging to the different repeat copies?

Here Kececioglu took a rigorous approach. Assume that there are k copies of a re-
peat. Hence, we ideally would like to partition the reads into k classes P1, P2, ... , Pk
together with k consensus strings S1, S2, ... , Sk such that the overall number of
errors

∑
1≤i≤k

∑
F∈Pi

D(F , Si) is minimized.

10024



Separating repeat copies (2)

This function is hard to compute but we can approximate it nicely by a) only con-
sidering DNP columns, and b) by choosing one of the strings in the partition as
consensus string (this is reasonable, since there are not many DNPs and hence it
is likely that one sequence of a group has indeed the consensus characters at the
DNP positions).

Thus our objective function is to find a partition into k groups that minimizes:∑
1≤i≤k

min
F∗∈Pi

{
∑

F∈Pi

H(F , F∗)}

where H(·, ·) is the Hamming distance.
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Separating repeat copies (3)

The above problem can be cast as a graph theoretical problem.

If we consider a complete, edge weighted graph Kn (vertices correspond to the
reads, edges are weighted with the Hamming distance), our task is to find k star
centers and an edge set that spans all vertices such that the overall weight of all
choosen edges is minimized.

10026



Separating repeat copies (4)

This problem can be formulated as an ILP and solved by a branch-and-bound algo-
rithm. Given a Kn the ILP has n2 + n variables:

• for each ordered pair (i , j), where i and j are vertices in Kn, there is a variable
xij .

• for each vertex i in Kn there is a variable yi .
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Separating repeat copies (5)

The ILP wants to minimize
∑

i 6=j wijxij and has a total of 3n2 + 3n + 1 constraints:

• ∀i and j , xij ≥ 0,

• ∀i , yi ≥ 0,

• ∀j ,
∑

1≤i≤n xij ≥ 1

• ∀i and j , yi ≥ xij , and

•
∑

1≤i≤n yi = k
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Separating repeat copies (6)

This ILP is solved by computing the LP relaxation and a simple application of the
branch-and-bound paradigm.

Integer solutions in each node of the enumeration tree are computed by rounding in
such a way, that those k vertices are choosen as star centers that have the heighest
average fractional weight by adjacent edges.

As branching variables those xij are choosen whose fractional value is nearest to
0.5. (If the xij are integral so are the yj .)
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Summary (7)

• Repeat resolution is an important practical problem arising in shotgun sequence
assembly projects.

• It can be divided into four subproblems: Locating the repeat region, Bounding
the area of analysis, Identifying DNPs, and Separating repeat copies.

• Tammi et al propose a statistical method that perfoms well for identifying DNPs

• Kececioglu gives a nice formulation to solve the separation problem.

• So far no approach uses mate pairs as additional information.
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