
 

 

 

 
Supplemental Figure 1: Total reads mapped by sample. 

The total number of mapped reads across each individual is plotted as “Total”.  The 

“Genomic” fraction is the number of reads after mapping quality filter of 10, location 

and paired orientation filtering.  The “Exonic” fraction is the number of reads 

mapping to known exons and where both paired-end reads map to the same annotated 

transcript.  The “Paired” fraction is the proportion of paired end reads that map to 

different exons for the same transcript requiring that the physical distance between 

exons is 200bp away.  The proportion of reads that were excluded by location from 

“Total” to “Genomic” that were unassembled or mitochondrial DNA is ~5-7%. 
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Supplemental Figure 2: Principal component analysis of lane quality and composition 

metrics 

During sequencing several samples were rerun when lanes had poor quality, low yield 

or poor fraction of mappable reads to either the genome or the known exome.  We 

tracked and tested various properties normalizing for sequencing depth including 

mean quality per base (for the whole fastq file and at both the top 10% and bottom 

10% of the file), the median quality value per base, the standard deviation of the 

quality value per base, the distribution of quality values, the mean quality of 

dinucleotides, the mean quality value by read position, the dinucleotide percentage, 

the number of uncalled bases, the mean number of uncalled bases by position in read, 

the mean GC content (at the top 10% and bottom 10% of the fastq file) and the 

standard deviation and distribution of GC content.  Incorporating these metrics, we 

generated PCA plots to help us diagnose lanes.  As can be seen in the plot the passing 

lanes (green) cluster tightly, while the failed lanes (red) are spread out.  PC1 and PC2 

are predominantly weighted by base quality metrics (PC1 describing 99% of the 

variance).  Right panel is zoomed-in version of the left panel.  Lanes marked as failed 

within the cluster are due to either DNA being erroneously introduced into the 

sequencing (3 cases highlighted), or, for 2325_8 were repeated with a better yielding 

lane, 2005_3 had low exonic mapping, or 2302_3, 2302_5 and 2302_6 were redone 

because of low yield and poor mapping percentage.  Despite a higher proportion of 

uncalled bases, lane 1671_5 (NA11918) was included in the analysis because it had 

good yield (8.5 million reads) and 88% of them mapped with the expected proportion 

mapping to the known exome.   
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Supplemental Figure 3: Mean read counts by exon (all 60 individuals). 

The mean read counts for all the exons and the association tested fraction from the 60 

individuals is plotted.  In total there were 254,955 exons analyzed of which 90,064 

exons for 10,777 genes were tested (having no more than 10% missing data).  The X-

axis is the log2 number of counts where 1 has been added to prevent taking the log of 

0.  We begin to see quantification of the tested fraction around 5 read counts. 
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Supplemental Figure 4: Comparison of gene RPKM (Reads Per kb per Million  

Reads) quantification (X-axis) versus array intensities (Y-axis). 

For each individual, each gene’s read count assessed via sequencing is transformed to 

RPKM values and compared to array quantification.  In total, 16,892 genes were 

compared for each individual to the mean values obtained for array-based probes for 

that respective gene.  The mean spearman correlation coefficient between the samples 

was 0.80 +/- 0.018 (mean +/- SD) (min: 0.72, max: 0.83) 
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Supplemental Figure 5: Correlation matrix of all sequencing lanes for tested exon 

data. 

Pairwise correlation of exon read count data for the tested 90,064 exons is plotted 

using the R ellipse package plotcorr correlation plot.  Here diagonal lines represent 

perfect correlation and full circles represent no correlation.  All shared runs are 

highlighted by a bounding box.  The first such box in the top left corner is a Yoruban 

individual (NA19238) that was sequenced in 7 lanes.  The next such box is for a 

CEPH individual (NA12892) that was also sequenced in 7 lanes.  When comparing 

identical samples which were sequenced on the same run we obtained an inter-lane 

spearman correlation of 0.919 ± 0.006 (this was 0.913 ± 0.003 for the 7 lanes of 

NA12892 and 0.925 ± 0.003 for the 7 lanes of NA19238).  When different samples 

were sequenced in the same run the spearman correlation was 0.829 ± 0.086, or in a 

different run: 0.754 ± 0.090.  We also looked at mean correlation between CEU 

individuals and a CEU individual sequenced in 7 lanes and between CEU individuals 

and a YRI individual sequenced in 7 lanes and found correlations of 0.750 ± 0.070 

and 0.730 ± 0.063 (tested).  This reduced correlation between CEU+YRI individuals 

compared to CEU+CEU individuals was significant (p=8.44e-06; t-test) and 

reinforces what we would expect due to population differentiation of gene expression.  

Lanes are identified by a 4 digit run number followed by a lane number.   
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Supplemental Figure 6: Average pairwise exon-exon correlation within gene across 

individuals. 

The distribution of R
2
 correlation statistic for reads for exon-exon comparisons 

filtered for those exons with minimum average reads across individuals of 0, 10 and 

50.  This demonstrates that as quantification increases the ability for one exon to 

inform the values in another also increases.  This highlights that single exon 

quantification does not go far enough to recover the correlation structure of transcripts 

within a gene but suggests that some intermediate quantification will inform 

quantification in the majority of transcripts. 
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Supplemental Figure 7: eQTL effect sizes between array and sequencing 

For 0.01 eQTLs the best association per exon or probe was determined.  The 

corresponding rho values were then transformed by taking the absolute value and 

average across all the associations detected for the same gene (i.e. if there were 

multiple probes or exons possessing 0.01 eQTLs per gene).  These values were 

compared for genes sharing an eQTL between the array and the RNA-seq.  The 

distribution of array rho values was higher than the sequencing rho values (top panel). 

There was significant correlation between the rho values for the shared eQTLs 

(bottom panel - Pearson correlation between the rho values was 0.68). 
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Supplemental Figure 8: Dynamic range of tested genes and genes with eQTLs. 

This plot shows the dynamic range of genes in the array data (Y-axis) and RNAseq 

data (X-axis – RPKM). Coloured dots indicate genes for which eQTLs (0.01 perm 

threshold) were found in RNA-Seq exon analysis only (red), array only (blue) and 

both (orange) at the 0.01 permutation threshold (see also Suppl Table 1 below). 
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Supplemental Figure 9: Cumulative plots of eQTL discovery 

Cumulative plots of eQTL discovery (0.01 perm threshold) for RNA-Seq exons (red), 

array data (blue) and whole gene RNA-Seq (green) along the dynamic range of 

RNAseq data (defined as RPKM) on the X-axis. 
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Supplemental Figure 10: Relative eQTL discovery 

Relative eQTL discovery (0.01 perm threshold) for RNA-Seq exons/arrays (grey) and 

RNA-Seq whole genes/arrays (black) along the dynamic range in RNA-Seq RPKM 

(left panel) and array log2 (right panel).  
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Supplemental Figure 11: Replication of YRI eQTLs in CEU. 

The top 500 SNP-gene associations from population sequencing and eQTL discovery 

in Yoruban individuals were compared in our CEU sequencing.  We plotted the p-

value distribution for all matching SNP-exon pairs in CEU.  This corresponded to 222 

similarly tested SNPs and 358 genes which 1345 SNP-exon associations.  Here, we 

see a strong enrichment in the significant p-values in the tail of the p-value 

distribution in CEU.  Using the 1-pi0 q-value statistic, this corresponds to 35% of the 

shared signals are true positives.  This was evaluated by permuting the same number 

of shared SNPs and genes and was found to be significant to at least 10,000 iterations 

(by example the median percentage of true positives across the permutations was 

0.7% and the mean was 3.5%).  Indicating that such replication between the studies 

by chance is very unlikely. 
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Supplemental Figure 12: eQTL distribution around transcription start site 

The best association per exon (top panels) and transcript (bottom panels) at a 

minimum permutation threshold of 0.01 is plotted.  Strong enrichment in significance 

and number of effects is centred on the transcription start site indicating that the 

majority of significant eQTLs are proximal to the gene. 
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Supplemental Figure 13: eQTL distances from 5’ exon start. 

The proximity of the best association per exon at a minimum permutation threshold of 

0.01 is plotted with respect to the 5’ end of the exon and its location in a multi-exonic 

gene.  Here we see that eQTLs discovered for last exons are proportionally the closest 

to their target exon followed by first exons, second exons and other exons (p=0.0058; 

t-test).   
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Supplemental Figure 14: Number of heterozygous alleles detected as a function of 

mapping quality. 

For heterozygote positions from all 60 individuals, we plotted the number of alleles 

that were discovered as a function of MAQ mapping quality.  Here the majority of 

heterozygotes have both alleles discovered.  A small fraction of the heterozygotes 

have three alleles discovered.  As mapping quality increases the fraction where only 

one allele is detected increases due to decreasing tolerance for mismatches. 
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Supplemental Figure 15: Reference allele frequency in read pileups by mapping 

quality. 

We investigate the bias towards the reference allele in heterozygote positions in each 

individual.  We observe a tendency for the reference allele to be overrepresented in 

pileups over a heterozygote.  We used this frequency as the success rate when 

assessing the binomial probability of allele-specific expression.  The three individuals 

which had noticeably higher proportion of reference to non-reference mapping at 

MAQ10 were NA12815 (0.58), NA12004 (0.63) and NA12892 (0.64).  INSET: The 

depth of sequencing over all heterozygote sites per individual is plotted.  
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Supplemental Figure 16: Correlation between eQTL significance and ASE effect ratio 

by coverage. 

The correlation of mean homozygote difference per 0.01 exon eQTL and the 

corresponding phased ASE heterozygote’s weighted ASE ratio is plotted.  It is 

apparent that as read depth over the heterozygote increases the correlation improves.  

Intermediate correlation indicates that the ASE effect and eQTL effect are in the same 

direction and support one another.  However, a challenge with this type of 

quantification is that coverage over heterozygotes is a function of transcript length 

meaning that some exons may be powered for eQTL discovery but have insufficient 

coverage for ASE quantification. 
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Supplemental Figure 17: One-sided ASE p-value distribution for exon eQTLs 

A one-sided ASE binomial p-value weighting by reference allele discovery at 

mapping quality 10 for reads at mapping quality 10 was assessed relative to the 

phasing for significant and non-significant eQTLs.   For significant eQTLs, we find 

enrichment in the tail of the p-value distribution indicating that the ASE is in the same 

direction as the eQTL.  For non-significant eQTLs, we see enrichment at both tails 

indicating as one would expect that the chosen eQTL SNP is not-informative for the 

direction of ASE signal.  This enrichment at both tails also highlights that there are 

regulatory haplotypes that are not captured by association. 
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Supplemental Figure 18: Insert size heterogeneity over significant ASE heterozygotes. 
We sought to measure the degree to which genetics influences transcript-specific expression.  

To do this we looked at the insert size distribution of paired end reads over each heterozygote.  

Our expectation was that the heterogeneity of inserts sizes over significant ASE heterozygotes 

between each of their alleles would be increased relative to that between alleles of non-

significant ASE heterozygotes.  This is because if one haplotype is increasing the expression 

of a particular transcript relative to another, the insert size distribution over that allele would 

be changed relative to the other allele. This increase could indicate an allele-specific 

expression of one isoform relative to another.  We tested this by conditioning for 

heterozygotes with a minimum of 50 reads for both alleles.  For each heterozygote for an 

individual, we ran a bootstrapped Kolmogorov-Smirnov test (1000 permutation) for the 

respective insert size distributions.  We then separated the p-values given the heterozygote 

was significant for ASE or not.  Of the 901 heterozygotes, 235 were significant for ASE and 

of those 105 had significant transcript distribution heterogeneity (KS p-value < 0.05); this 

corresponded to 72 of 105 genes which contained an ASE significant heterozygote.  The plot 

above shows the resulting QQ plot of –log10 transformed KS-test p-values partitioned by the 

significant versus non-significant ASE heterozygotes.  A feature of this comparison is that it 

is not biased by technical insert size heterogeneity as each individual is processed separately.  

To further assess the significance of this deviation, we permuted the assignment of significant 

ASE 10,000 times within the heterozygotes and plotted the 99.99%, 99.9% and 99% QQ 

plots.  As expected, because of the increased relative pool of non-significant to significant 

ASE heterozygotes, these permuted plots showed skew towards non-significant p-values.  

None of these permuted plots include the real signal indicating that the significance of this 

enrichment is at least 1 in 10,000 and that the ASE significant heterozygotes have more insert 

size heterogeneity than the ASE non-significant heterozygotes.  This enrichment highlights 

that transcript-specific genetic control is a feature of regulatory complexity. 
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Supplemental Figure 19: QQ plot of associations of SNPs tested against the lenght of 

the 3’ UTR of genes (alternative endings). 

The QQ plot shows large enrichment for genetic effects influencing the length of the 

3’ UTR of genes (Spearman Rank correlation between inferred length of 3’ UTR and 

SNP genotypes within 1 Mb) 
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Supplemental Figure 20: QQ plot of associations of SNPs tested against insert size 

distributions (alternative transcript forms). 

The QQ plot shows large enrichment for genetic effects influencing the internal 

structure of genes as this is represented by the distribution of insert sizes (Spearman 

Rank correlation between mean insert size and SNP genotypes within 1 Mb) 
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Supplemental Figure 21: PCA of RNASEQ60 samples within HapMap3 

The first two principal components of a PCA within CEPH and within HapMap3 

populations for the sequenced samples are shown.  Here the imputed SNPs are 

highlighted.  It can be seen that there is no special clustering of the imputed SNPs 

which would indicate high-error during imputation. 
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Methods 

(Figures): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 22: Correlation of gene expression with read depth 

The histogram (Y-axis: frequency; X-axis: p-value) shows the p-value distribution of 

Spearman Rank Correlation tests between read depth of a given sample with 

normalized gene expression abundance estimates for all genes (yellow), genes with 

eQTL (blue) and gene without and eQTL(red). As is clear from the plot, the 

distributions are uniform, as expected, so read depth does not have an overall effect 

on gene expression quantification, and furthermore there is no difference between 

those genes with an eQTL and genes without an eQTL (Mann-Whitney, P = 0.98) 
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Supplemental Figure 23: FluxCapacitor outline 

Information about overlapping segments in alternative transcripts (center) is non-

redundantly described by a form of splice graphs, with edges for each segment of an 

exon included in a different number of transcripts (top). Each node represents a splice 

site (respectively, transcription start and poly-adenylation).  Intronic edges are 

depicted as dashed arrows, whereas edges that represent exonic segments are solid 

arrows. Subsequently, reads (zig-zag line) get mapped to sets of these edges called k-

super edges Xi.  For each such k-super edge Xi holds that the sum of expression 

contribution (i.e., "flux") from all transcripts including the edge, meets the observed 

read flux at the edge (i.e., the  reads mapped to the edge) plus some error . In order 

to account for biases in the read distribution along the transcript (bottom), capacity 

correction factors  are estimated for each edge and transcript. Indeed read 

distribution profiles are calculated in non-overlapping transcripts, binned by several 

transcript lengths and expression levels such that given a transcript, the most 

appropriate profile given the transcript length and expression is used to calculate the 

area under the profile between the edge limits. This area is the correction capacity for 

the edge and transcript. The collection of linear constraints along all exonic edges of 

the labelled splice graph forms a system that is solved by linear programming, 

minimizing the sum of all edge noise levels  
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Supplemental Table 1: eQTL results for the overlapping set of 9319 genes  

ASSOCIATIONS PERMUTATION THRESHOLDS* 

 0.05 0.01 0.001 

Exon quantification 3003 768 85 

Transcript quantification 914 217 36 

Whole gene quantification 711 206 44 

Array-based quantification 961 348 127 

• gene level thresholds 

 

For the overlapping set of 9319 genes we compare eQTL discoveries for the 3 RNA-

Seq based quantifications and arrays. 
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