
Fast filtering algorithms
This exposition is based on the following sources, which are all recommended read-
ing:

1. Flexible Pattern Matching in Strings, Navarro, Raffinot, 2002, chapter 6.5,
pages 162ff.

2. Burkhardt et al.: q-gram Based Database Searching Using a Suffix Array
(QUASAR), RECOMB 99

We will present the hierarchical filtering approach of Navarro and Baeza-Yates and
and the simple QUASAR idea.

4000

Filtering algorithms

The idea behind filtering algorithms is that it might be easier to check that a text
position does not match a pattern string that to verify that it does.

Filtering algorithms filter out portions of the text that cannot possibly contain a
match, and, at the same time, find positions that can possibly match.

These potential match positions then need to be verified with another algorithm like
for example the bit-parallel algorithm of Myers (BPM).

4001

Filtering algorithms (2)

Filtering algorithms are very sensitive to the error level α := k/m since this normally
affects the amount of text that can be discarded from further consideration. (m =
pattern length, k = errors.)

If most of the text has to be verified, the additional filtering steps are an overhead
compared to the strategy of just verifying the pattern in the first place.

On the other hand, if large portions of the text can be discarded quickly, then the
filtering results in a faster search.

Filtering algorithms can improve the average-case performance (sometimes dra-
matically), but not the worst-case performance.

4002

PEX

4003

The pidgeonhole principle

The idea behind the presented filtering algorithm is very easy. Assume that we want
to find all occurrences of a pattern P = p1, ... , pm in a text T = t1, ... , tn that have an
edit distance of at most k .

If we divide the pattern into k + 1 pieces P = p1, ... , pk+1, then at least one of the
pattern pieces has to match without error .

4004

The pidgeonhole principle (2)

There is a more general version of this principle first formalized by Myers in 1994:
Lemma 1. Let Occ match P with k errors, P = p1, ... , pj be a concatenation of
subpatterns, and a1, ... , aj be nonnegative integers such that A =

∑j
i=1 ai . Then, for

some i ∈ 1, ... , j , Occ includes a substring that matches pi with baik/Ac errors.

Proof: Exercise.

4005

The pidgeonhole principle (3)

So the basic procedure is:

1. Divide: Divide the pattern into k + 1 pieces of approximately the same length.

2. Search: Search all the pieces simultaneously with a multi-pattern string match-
ing algorithm. According to the above lemma, each possible occurrence will
match at least one of the pattern pieces.

3. Verify: For each found pattern piece, check the neighborhood with a verification
algorithm that is able to detect an occurrence of the whole pattern with edit dis-
tance at most k . Since we allow indels, if pi1 ... pi2 matches the text tj ... tj+i2−i1,
then the verification has to consider the text area tj−(i1−1)−k ... tj+(m−i1)+k ,
which is of length m + 2k .

4006

An example

Say we want to find the pattern annual in the texts

t1 = any annealing and

t2 = an unusual example with numerous verifications

with at most 2 errors.

4007

An example (2)

1. Divide: We divide the pattern annual into p1 = an, p2 = nu, and p3 = al . One
of these subpattern has to match with 0 errors.

2. Search: We search for all subpatterns:

1: searching for an: in t_1: find positions 1, 5

in t_2: find position 1

2: searching for nu: in t_1: find no positions

in t_2: find positions 5, 25

3: searching for al: in t_1: find position 9

in t_2: find position 9

3. Verification: We have to verify 3 positions in t1, and 4 positions in t2, to find 3
occurrences at positions (indexed by the last character) 9, 10, 11 in t1 and none
in t2.

4008

Hierarchical verification

The toy example makes clear that many verifications can be triggered that are un-
successsful and that many subpatterns can trigger the same verification. Repeated
verfications can be avoided by carefully sorting the occurrences of the pattern (ex-
ercise).

It was shown by Baeza-Yates and Navarro that the running time is dominated by the
multipattern search for error levels α = k/m below 1/(3 log|Σ|m). In this region, the

search cost is about O(kn
log|Σ|m

m). For higher error levels, the cost for verifications
starts to dominate, and the filter efficiency deteriorates abruptly.

Baeza-Yates and Navarro introduced the idea of hierarchical verification to reduce
the verification costs, which we will explain next. Then we will work out more details
of the three steps.

4009

Hierarchical verification (2)

Navarro and Baeza-Yates use Lemma ?? for a hierarchical verification. The idea
is that, since the verification cost is high, we pay too much for verifying the whole
pattern each time a small piece matches. We could possibly reject the occurrence
with a cheaper test for a shorter pattern.

So, instead of directly dividing the pattern into k + 1 pieces, we do it hierarchically.
We split the pattern first in two pieces and search for each piece with bk/2c errors,
following Lemma ??. The halves are then recursively split and searched until the
error rate reaches zero, i. e. we can search for exact matches.

With hierarchical verification the area of applicability of the filtering algorithm grows
to α < 1/ log|Σ|m, an error level three times as high as for the naive paritioning and
verification. In practice, the filtering algorithm pays off for α < 1/3 for medium long
patterns.

4010

Hierarchical verification (3)

Example. Say we want to find the pattern P = aaabbbcccddd in the text T =
xxxbbbxxxxxx with at most k = 3 differences. The pattern is split into four pieces
p1 = aaa, p2 = bbb, p3 = ccc, p4 = ddd. We search with k = 0 errors in level 2 and
find bbb.

level 0 aaabbbcccddd with k=3 errors

/ \

level 1 aaabbb cccddd with k=1 errors

/ \ / \

level 2 aaa bbb ccc ddd with k=0 errors

4011

Hierarchical verification (4)

Now instead of verifying the complete pattern in the complete text (at level 0) with
k = 3 errors, we only have to check a slightly bigger pattern (aaabbb) at level 1 with
one error. This is much cheaper. In this example we can decide that the occurrence
bbb cannot be extended to a match.

level 0 aaabbbcccddd with k=3 errors

/ \

level 1 AAABBB cccddd with k=1 errors

/ \ / \

level 2 aaa BBB ccc ddd with k=0 errors

4012

The PEX algorithm

Divide: Split pattern into k + 1 pieces, such that each piece has equal probability of
occurring in the text. If no other information is available, the uniform distribution is
assumed and hence the pattern is divided in pieces of equal length.

4013

The PEX algorithm (2)

Build Tree: Build a tree of the pattern for the hierarchical verification. If k + 1 is not
a power of 2, we try to keep the binary tree as balanced as possible.

Each node has two members from and to indicating the first and the last position of
the pattern piece represented by it. The member err holds the number of allowed
errors. A pointer myParent leads to its parent in the tree. (There are no child
pointers, since we traverse the tree only from the leafs to the root.) An internal
variable left holds the number of pattern pieces in the left subtree. idx is the next
leaf index to assign. plen is the length of a pattern piece.

Algorithm CreateTree generates a hierarchical verification tree for a single pattern.
(Lines ?? and ?? are justified by Lemma ??.)

4014

The PEX algorithm (3)

1 CreateTree(p = pipi+1 ... pj , k , myParent , idx , plen)
2 // Note: the initial call is: CreateTree (p, k , nil , 0, bm/(k + 1)c)
3 Create new node node
4 from(node) = i
5 to(node) = j
6 left = d(k + 1)/2e
7 parent(node) = myParent
8 err (node) = k
9 if k = 0

10 then leafidx = node
11 else
12 lk = b(left · k)/(k + 1)c
13 CreateTree(pi ... pi+left ·plen−1, lk , node, idx , plen)
14 rk = b((k + 1− left) · k)/(k + 1)c
15 CreateTree(pi+left ·plen ... pj , rk , node, idx + left , plen)
16 fi

4015

The PEX algorithm (4)

Example: Find the pattern P = annual in the text T = annual CPM anniversary

with at most k = 2 errors. First we build the tree with k + 1 = 3 leaves. Below we
write at each node ni the variables (from, to, error) .

"annual" n4=(1,6,2)

/ \

"annu" n3=(1,4,1) \

/ \ \

"an" n0=(1,2,0) "nu" n1=(3,4,0) "al" n2=(5,6,0)

| | |

leaf 0 leaf 1 leaf 2

4016

The PEX algorithm (5)

Search: After constructing the tree, we have k + 1 leafs leafi . The k + 1 subpatterns

{ pfrom(n), ... , pto(n), n = leafi , i ∈ {0, ... , k} }

are sent as input to a multi-pattern search algorithm (e. g. Aho-Corasick, Wu-
Manbers, or SBOM). This algorithm gives as output a list of pairs (pos, i) where
pos is the text position that matched and i is the number of the piece that matched.

The PEX algorithm performs verifications on its way upward in the tree, checking
the presence of longer and longer pieces of the pattern, as specified by the nodes.

4017

The PEX algorithm (6)

1 Search phase of algorithm PEX
2 for (pos, i) ∈ output of multi-pattern search do
3 n = leafi ; in = from(n); n = parent(n);
4 cand = true;
5 while cand = true and n 6= nil do
6 p1 = pos − (in − from(n))− err (n);
7 p2 = pos + (to(n)− in) + err (n);
8 verify text tp1 ... tp2 for pattern piece pfrom(n) ... pto(n)
9 allowing err (n) errors;

10 if pattern piece was not found
11 then cand = false;
12 else n = parent(n);
13 fi
14 od
15 if cand = true
16 then report the positions where the whole p was found;
17 fi
18 od

4018

The PEX algorithm (7)

We search for annual in annual CPM anniversary. We constructed the tree for
annual. A multi-pattern search algorithm finds: (1, 1), (12, 1), (3, 2), (5, 3). (Note
that leaf i corresponds to pattern pi+1). For each of these positions we do the
hierarchical verification:

Initialization for (1,1);

n=n0; in=1; n=n3; cand=true;

While loop;

a) p1=1-(1-1)-1=0; p2=1+(4-1)+1=5;

verify pattern annu in text annua with 1 error => found !

b) p1=1-(1-1)-2=-1; p2=1+(6-1)+2=8;

verify pattern annual in text annual_C => found !

c) report end positions (6,7,8)

4019

The PEX algorithm (8)

Initialization for (3,2);

n=n1; in=3; n=n3; cand=true;

While loop;

a) p1=3-(3-1)-1=0; p2=3+(4-3)+1=5;

verify pattern annu in text annua with 1 error => found !

b) p1=3-(3-1)-2=-1; p2=3+(6-3)+2=8;

verify pattern annual in text annual_C => found !

c) report end positions (6,7,8)

4020

The PEX algorithm (9)

Initialization for (12,1);

n=n0; in=1; n=n3; cand=true;

While loop;

a) p1=12-(1-1)-1=11; p2=12+(4-1)+1=16;

verify pattern annu in text _anniv with 1 error => found !

b) p1=12-(1-1)-2=10; p2=12+(6-1)+2=19;

verify pattern annual in text M_annivers => NOT found !

4021

Summary

• Filtering algorithms prevent a large portion of the text from being looked at.

• The larger α = k/m, the less efficient filtering algorithms become.

• Filtering algorithms based on the pidgeonhole principle need an exact, multi-
pattern search algorithm and a verification capable approximate string matching
algorithm.

• The PEX algorithm starts verification from short exact matches and considers
longer and longer substrings of the pattern as the verification proceeds upward
in the tree.

4022

QUASAR - q-gram based database searching

This exposition has been developed by Knut Reinert. It is based on the following
sources, which are all recommended reading:

1. Burkhardt et al. (1999) q-gram Based Database Searching Using a Suffix Array
(QUASAR), Proc. RECOMB 99.

2. Burkhardt and Kärkkäinen (2001) Better Filtering with Gapped q-grams, Proc.
CPM 01.

The tool QUASAR aims at aligning a query S = s1, ... , sm in a text, also called
database D = d1, ... , dn. It can be seen as an efficient filter that uses exact matches.
In contrast to online filtering algorithms, QUASAR uses a suffix array as indexing
structure for the database.

5000

Quasar

5001

Quasar

QUASAR, or “Q-gram Alignment based on Suffix ARrays”, is a filtering ap-
proach. QUASAR finds all local approximate matches of a query sequence S in
a database D = {d , ...}. The verification is performed by other means.

Definition. A sequence d is locally similar to S, if there exists at least one pair
(Si ,i+w−1, d ′) of substrings such that:

1. Si ,i+w−1 is a substring of length w and d ′ is a substring of D, and

2. the substrings d ′ and Si ,i+w−1 have edit distance at most k .

We call this the approximate matching problem with k differences and window length
w .

For simplicity, we assume that the database consists of only one sequence, i. e.
D = {d}.

5002

The q-gram lemma

A short subsequence of length q is called a q-gram. In the following we start by
considering the first w letters of S. The algorithm uses the following lemma:
Lemma 2. Let P and S be strings of length w with at most k differences. Then P
and S share at least w + 1− (k + 1)q common q-grams.

In our case, this means:
Lemma 3. Let an occurrence of S1,w with at most k differences end at position j
in D. Then at least w + 1 − (k + 1)q of the q-grams in S1,w occur in the substring
Dj−w+1,j .

Proof: Exercise. . . .

That means that as a necessary condition for an approximate match, at least t =
w + 1 − (k + 1)q of the q-grams contained in S1,w occur in a substring of D with
length w . For example the strings ACAGCTTA and ACACCTTA have 8 + 1− (1 + 1)3 = 3
common 3-grams, namely ACA,CTT and TTA.

5003

The q-gram lemma (2)

match? no if #
q-grams < t

match? maybe
if # q-grams ≥ t

D

S1 w

5004

q-gram index

The algorithm builds in a first step an indexing structure as follows:

1. Build a suffix array A over D.

2. Given q, compute for all possible | Σ |q q-grams the start position of the hitlist.
This allows to lookup a q-gram in constant time.

3. If another q is specified, A is used to recompute the above table.

5005

q-gram index (2)

AA A A

A A A C

C C G T

T T T T

. . .

. . .

. . .

1

0

2

3

n

...

...

...

87

7

32

12

3

AAAAACGCTAAGCG. . .

AAAAAGGCT. . .

AAAAAGGTTCTCCTTAAATC. . .

AAAAGAAAGTTCTCCTTAAATC. . .

TTTTAAGGCCTTAAATC. . .

...

...

...

q-gram table

suffix array

5006

Counting q-grams

Now we have to find all approximate matches between S1,w and D, that means we
have to find all substrings in D that share at least t q-grams with S1,w . The algorithm
proceeds in the following basic steps on which we will elaborate:

1. Define two arrays of non-overlapping blocks of size b ≥ 2w . The first array is
shifted by b/2 against the other.

2. Process all q-grams in S1,w and increment the counters of the corresponding
blocks.

3. All blocks containing approximate matches will have a counter of at least t . (The
reverse is not true).

4. Shift the search window by one. Now we consider S2,w+1.

5007

Blocking

..............

..............

B_3

B_4

B_1

B_2

B_c−3

B_c−2

B_c−1

Since we want to count the q-grams that are in common between the query and
the database, we use counters. Ideally we would use a counter of size w for each
substring of this size. Since this uses too much memory, we build larger, non-
overlapping blocks. While this decreases the memory usage, it also decreases the
specificity.

Since the blocks are not overlapping we might miss q-grams that cross the block
boundary. As a remedy, we use a second, shifted array of blocks.

5008

Window Shifting

We started the search for approximate matches of window length w with the first
w-mer in S, namely S1,w . In order to determine the approximate matches for the
next window S2,w+1, we only have to discard the old q-gram S1,q and consider the
new q-gram Sw−q+2,w+1.

To do that we decrement the counters of all blocks that contain S1,q that have not
reached the threshold t . However, if the counter has already reached t it stays at
this value to indicate a match for the extension phase.

For the new block we use the precomputed index and the suffix array to find the
occurrences of the new q-gram and increment the corresponding block counters (at
most two).

5009

Alignment

After having computed the list of blocks, QUASAR uses BLAST to actually search
the blocks. Here are some results from the inital implementation. QUASAR was
run with w = 50, q = 11, and t such that windows with at most 6% differences are
found. Reasonable values for the block size are 512 to 4096.

DB size query id. res. filtr. ratio QUASAR BLAST
73.5 Mb 368 91.4% 0.24% 0.123 s 3.27 s
280 Mb 393 97.1% 0.17% 0.38 s 13.27 s

“A database in BLAST format is built in main memory which is then passed to the BLAST search

engine. The construction of this database requires a significant amount of time and introduces

unnecessary overhead.”

5010

Gapped q-grams

5011

Gapped q-grams

In order to achieve a high filtration rate, we would like to choose q as large as
possible, since the number of hits decreases exponentially in q. On the other hand,
the threshold t = w − q − qk + 1 also decreases with increasing q thereby reducing
the filtering efficiency. The question is whether we could increase the length of the
q-grams somehow, such that the threshold t stays high.

This can indeed be achieved by using gapped q-grams. For example the 3-grams
with the shape ##.# in the string ACAGCT are AC.G, CA.C, and AG.T:

ACAGCT

AC G

CA C

AG T

Next we define the concept formally.

5012

Gapped q-grams (2)

Definition 4.

• A shape Q is a set of non-negative integers containing 0.

• The size of Q, denoted by |Q|, is the cardinality of the set.

• The span of Q is s(Q) = max Q + 1.

• A shape of size q and span s is called (q, s)-shape.

• For any integer i and shape Q, the positioned shape Qi is the set {i + j | j ∈ Q}.

• Let Qi = {i1, i2, ... , iq}, where i = i1 < i2 < i3 < · · · < iq, and let S = s1s2 ... sm
be a string. For 1 ≤ i ≤ m − s(Q) + 1, the Q-gram at position i in S, denoted
by S[Qi], is the string si1si2 ... siq .

• Two strings P and S have a common Q-gram at position i if P[Qi] = S[Qi].

5013

Gapped q-grams (3)

Example 5. Let Q = {0, 1, 3, 6} be a shape. Using the graphical representation
it is the shape ##.#..#. Its size is |Q| = 4 and its span is s(Q) = 7. The string
ACGGATTAC has three Q-grams: S[Q1] = s1s2s4s7 = ACGT , S[Q2] = CGAA, and
S[Q3] = GGTC.

The q-gram lemma can be extended for gapped q-grams. A generalization gives

t = w − s(Q)− |Q|k + 1.

However it is not tight anymore (we will prove this).

5014

Gapped q-grams (4)

Example 6. Let w = 11 and k = 3 and consider the 3-shapes ### and ##.#. The
above threshold for the two shapes is 0 = 11 − 3 · 4 + 1 and −1 = 11 − 4 −
3 · 3 + 1 respectively. Thus neither shape would be useful for filtering. However,
the real threshold for ##.# is 1. This can be checked by a full enumeration of all
combinations of 3 mismatches.

shape: ### shape: ##.#

Worst-case mismatch positions

5015

New threshold

What is the (tight) threshold for arbitrary Q-shapes?

Let P = p1, ... , pw and S = s1, ... , sw be two strings of length w . Let R(P, S) be
the set of positions where S and P do not match. Then |R(S, P)| is the Hamming
distance of P and S.

To determine the common Q-grams of P and S only the mismatch set is needed: It
holds that

P[Qi] = S[Qi] if and only if Qi ∩ R(P, S) = ∅.

Using this notation we can define the threshold of a shape Q for a pattern of length
w and Hamming distance k as:

t(Q, w , k) := min
R⊆{1,...,w},|R|=k

∣∣{i ∈ {1, ... , w − s(Q) + 1} | Qi ∩ R = ∅}
∣∣

5016

New threshold (2)

From the above discussion we get the following tight form of the q-gram lemma for
arbitrary shapes:
Lemma 7. Let Q be a shape. For any two strings P and S of length w with Ham-
ming distance k, the number of common Q-grams of P and S is at least t(Q, w , k).
Furthermore, there exist two strings P and S of length w and Hamming distance k,
for which the number of common Q-grams is exactly t(Q, w , k).

5017

New threshold (3)

It is easy to see that this bound is as least as tight as the lower bound we already
introduced:
Lemma 8.

t(Q, w , k) ≥ max{0, w − s(Q)− |Q|k + 1}

Proof: Let R be the set minimizing the expression in the definition of

t(Q, w , k). For each j ∈ R there are exactly |Q| integers i such that j ∈ Qi.

Therefore, at most k |Q| of the positioned shapes Qi, i ∈ {1, ... , w−s(Q)+1},
intersect with R, and at least w − s(Q)− k |Q| + 1 do not intersect with R.

5018

New threshold (4)

T The above lemma gives indeed the exact threshold for ungapped q-grams.
Lemma 9. Let Q be a contiguous shape,i. e., Q = {0, ... , q − 1}. Then

t(Q, w , k) = max{0, w − s(Q)− |Q|k + 1} = max{0, w − q(k + 1) + 1}.

Proof: The lower bound is shown by Lemma ??. For the upper bound

we choose R = {q, 2q, ... , kq}. Then Qi intersects with R if and only if

i ∈ {1, ... , kq}, and thus does not intersect with R if i ∈ {kq+1, ... , w−q+1}.
Hence for this R we have only w−q +1−kq−1+1 = w− (k +1)q +1 common

q-grams.

5019

New threshold (5)

The following table gives the exact thresholds for all shapes for w = 50 and k = 5.
One can see that in many cases, especially for higher values of q, best gapped
shapes have higher thresholds than contiguous shapes of the same or even smaller
size.

s ↓ : q → 4 5 6 7 8 9 10
5 26 21 − − − − −
6 25 20 15 − − − −
7 24 19 14 9 − − −
8 23 18 13 8 3 − −
9 22 18 > 17 14 > 12 9 > 7 5 > 2 0 −
10 21 18 > 16 13 > 11 10 > 6 6 > 1 3 > 0 0
11 20 16 > 15 13 > 10 10 > 5 7 > 0 4 > 0 2 > 0
12 19 16 > 14 12 > 9 9 > 4 7 > 0 4 > 0 2 > 0

5020

New threshold (6)

It has to be noted that it does not suffice to put in gaps somewhere; the gaps have
to be choosen carefully. For example in the above table (w = 50, k = 5, and q = 12)
there are only two shapes with a positive threshold, namely ###.#..###.#..###.#

and #.#.#...#.....#.#.#...#.....#.#.#...# and their mirror images.

5021

Minimum coverage

The filtering efficiency of a Q-gram clearly depends on the threshold t(Q, w , k).
However there is also another factor that influences it. This factor is called minimum
coverage.

Before we define it formally lets have a look at an example.

5022

Minimum coverage (2)

Example 10. Let w = 13 and k = 3. Then both shapes ### and ##.# have a
threshold of two. If two strings have four consecutive characters then they have two
common 3-grams of shape ###. In contrast, in order to have two common 3-grams
of shape ##.#, two strings need at least 5 matching characters.

This means, that the gapped 3-gram would have a lower count of common q-grams
on strings that have only four consecutively matching characters although it has the
same threshold.

5023

Minimum coverage (3)

Definition 11. Let Q be a shape and t be a non-negative integer. The minimum
coverage of Q for threshold t is:

c(Q, t) = min
C⊂N,|C|=t

| ∪i∈CQi | .

Hence the minimum coverage is the minimum number of characters that need to
match between a pattern and a text substring for there to be t matching Q-grams.

Whenever possible, gapped Quasar chooses the highest minimum coverage, since
it makes it more unlikely that a random string matches t Q-grams. This improves
the filter efficency.

5024

Minimum coverage (4)

Computational experiments indicate that there is a strong correlation between the
minimum coverage c(Q, t(Q, m, k)) and the filter efficiency.

Correlation between expected and actual number of potential matches.
5025

Best shapes (5)

The following table shows different shapes for k = 5. The column best shows the
shape with the highest minimum coverage (ties are broken using the threshold).
The column median shows the median shape ordered by minimum coverage. If one
chooses a random shape, the chance is 50% to be better (or worse) than this one.
The last column show the best one-gapped shape. (The details of the tie breaking
used here can be read in the paper.)

q best median 1-gapped

6 ##......#..#..#.# #.###.....#.# #####....#

7 #.##......##..#.# ##..#..#..## #####...##

8 ##..#.#...............##..#.# #.#..####...#.# ######...##

9 ###..#..#.#...#.## ######..#.#.# #######..##

10 ###..#..#.#..###.# ##.##..#.#.###.# #######

5026

Index structure

It is not necessary to use a suffix array for ungapped q-grams, and it is not possible
anymore to use a suffix array for the gapped Q-grams. Instead, the database is
scanned twice. The first time the number of occurrences of all Q-grams is counted.

In the second scan, the positions at which a q-gram starts are recorded in an array
of size n. During that scan, the index points to the start of the respective list.

The detail shall be worked out as an exercise.

5027

Extension to Levenshtein distance

Note that the q-gram method presented so far can only be used to find local approx-
imate matches with the Hamming distance.

The q-gram method can be generalized to the Levenshtein distance. Burkhardt and
Kärkkäinen have described an extension that uses ‘one-gapped q-grams’.

The idea is to model insertions and deletions by additional Q-grams. For example,
with the basic shape ##-# applied the text, we would use ##-#, ##--#, and ### for
the pattern.

The filter then compares all three shapes in the pattern to the q-grams of the basic
shape in the text. Thus matching q-grams are even found in the presence of indels.

Otherwise he algorithm stays essentially unchanged, except that the threshold com-
putation is slightly different.

5028

Summary

• Filtering based on q-grams using a suffix array with an index is an efficient
filtering method.

• In the gapless case, filtering efficiencies of ≈ 0.2% were observed for genomic
sequences.

• Gapped Q-grams improve the filtering efficency further (by orders of magni-
tude).

• The threshold t and the minimum coverage both influence the filter efficency.

• No closed formula is known for computing t for gapped Q-grams.

5029

Q-gram filters for ε-matches
This exposition was developed by Clemens Gröpl. It is based on:

• Kim R. Rasmussen, Jens Stoye, Eugene W. Myers: Efficient q-Gram Filters for
Finding All ε-Matches over a Given Length, Journal of Computational Biology,
Volume 13, Number 2, 2006, pages 296–308. (Originally presented at GCB
2004 and RECOMB 2005.) [RSM06]

6000

Motivation

Comparison of large genomic sequences can be speeded up a lot if filtering tech-
niques are applied. The key observation is that a local alignment of high sequence
similarity must contain at least a few short exact matches.

The idea of using q-grams for fast filtering is not new. A q-gram is a substring of
length q. Programs like BLAST use q-grams which occur in both sequences as
seeds for a local alignment search.

It has also been observed that combining the idea of seeds with a combinatorial
argumentation based on some form of the pigeon hole principle can be used to
discard large parts of the input sequences from further consideration, because they
cannot contain a good local alignment.

6001

Motivation (2)

We can distinguish three kinds of algorithms.

When applied for finding highly similar regions, the classical exact algorithms (e. g.
Smith-Waterman) will spend most of the time verifying that there is no match be-
tween a given pair of regions. The running times (typically the product of sequence
lengths) are infeasible for genome size sequences.

Heuristics like BLAST typically employ a q-gram index to locate seeds and perform a
verification for the candidate regions located in this way. However, BLAST might fail
to recognize an existing match, unless the filtering parameters are set very stringent.
Thus one has to trade off sensitivity against speed.

A filter is an algorithm that allows us to discard large parts of the input, but is guar-
anteed not to loose any significant match. The trade-off to be considered for filtering
algorithms is thus only whether the additional effort is payed off by the saving of time
spent for verifications.

6002

Motivation (3)

In this lecture, we will consider the problem of finding matches of low error rate ε
and a given minimum length n0.

The cost measure will be the edit distance (Levenshtein distance). That is, the dis-
tance between two strings is the number of insertions, deletions, and substitutions
needed to transform one into the other.

The SWIFT algorithm is an improvement of the QUASAR algorithm by Burkhardt
et. al.. Note, however, that QUASAR uses an absolute error threshold rather than
an error rate. Using an error rate is more appropriate since the length of a local
alignment is not known in advance.

The filter has been successfully applied for the fragment overlap computation in
sequence assembly and for BLAST-like searching in EST sequences.

6003

Definitions

As usual, let A and B denote strings over a finite alphabet Σ, let |A| be the length of
A, let A[i] be the i-th letter of A, and let A[p..q] be the substring starting at position
p and ending with position q of A, thus A[i ..i] consists of the letter A[i]. A substring
of length q > 0 of A is a q-gram of A.

The (unit cost) edit distance between strings A and B is the minimum number of
edit operations (insertion, deletion, substitution) in an alignment of A and B. It is
denoted by dist(A, B).

The edit distance can be computed by the well-known Needleman-Wunsch algo-
rithm. It computes in O(|A||B|) time an edit matrix E(i , j) := dist(A[1..i], B[1..j]). The
letter A[i] corresponds to the step from row i − 1 to i , so it is natural to visualize the
letters between the rows and columns of the edit matrix, etc..

An ε-match is a local alignment for substrings (α,β) with an error rate of at most ε.
That is, dist(α,β) ≤ ε|β|. (Note the ‘asymmetry’ in the definition of error rate.)

6004

Definitions (2)

The problem can now be formally stated as follows:

Given a target string A and a query string B, a minimum match length n0
and a maximum error rate ε > 0;

Find all ε-matches (α,β) where α and β are substrings of A and B, respec-
tively, such that

1. |β| ≥ n0 and

2. dist(α,β) ≤ bε|β|c.

6005

q-gram filters for ε-matches

A q-hit is a pair (i , j) of indices such that A[i ..i + q − 1] = B[j ..j + q − 1].

The basic idea of the q-gram method is as follows:

1. Find (enumerate) all q-hits between the query and the target strings.

2. Identify regions (in the Cartesian product of the strings) that have “enough” hits.

3. Such candidate regions are then subjected to a closer examination.

The concrete methods differ in the shape and the size of the regions.

6006

q-gram filters for ε-matches (2)

The following lemma relates ε-matches (α,β) to parallelograms of the edit matrix.
For a moment, we assume that the length of β is known, so that we can work with
an absolute bound on the distance.

An n × e parallelogram of the edit matrix consists of entries from n + 1 consecutive
rows and e + 1 consecutive diagonals.

Lemma 1. Let α and β be substrings of A and B, respectively, and assume that
|β| = n and dist(α,β) ≤ e. Then there exists an n × e parallelogram P such that

1. P contains at least T (n, q, e) := (n + 1)− q(e + 1) q-hits,

2. the B-projection of the parallelogram is pB(P) = β,

3. the A-projection pA(P) of the parallelogram is contained in α.

The A- and B-projections are defined as illustrated below.

6007

q-gram filters for ε-matches (3)

The A-projection pA(P) of a parallelogram P is defined as the substring of A between
the last column of the first row of P and the first column of the last row of P.

The B-projection pB(P) of a parallelogram P is defined as the substring of B be-
tween the first and the last row of P.

6008

q-gram filters for ε-matches (4)

(Note: these figures are taken from the RECOMB and GCB version, which uses the
transposed matrix of the JCB article.)

6009

q-gram filters for ε-matches (5)

Clearly, a q-hit (i , j) corresponds to q + 1 consecutive entries of the edit matrix along
the diagonal j − i . A q-hit is contained in a parallelogram if its corresponding matrix
entries are.

The proof of Lemma 1 is straightforward: Consider the path of an optimal alignment
of α and β. At each row except for the last q ones, we have a q-gram unless there
is an edit operation among the next q edges. Each edit operation can ‘destroy’ at
most q q-hits.

So the case where |β| is fixed was easy. Next we consider ε-matches for |β| ≥ n0.
The following lemma is the combinatorial foundation of the SWIFT algorithm.

6010

q-gram filters for ε-matches (6)

Lemma 2. Let α and β be substrings of A and B, respectively, and assume that
|β| ≥ n0 and dist(α,β) ≤ ε|β|. Let U(n, q, ε) := T (n, q, bεnc) = (n + 1)− q(bεnc + 1)
and assume that the q-gram size q and the threshold τ have been chosen such that

q < d1/εe and τ ≤ min
{
U(n0, q, ε), U(n1, q, ε)

}
,

where n1 :=
⌈
(bεn0c + 1)/ε

⌉
.

Then there exists a w × e parallelogram P such that:

1. P contains at least τ q-hits whose projections intersect α and β,

2. w = (τ − 1) + q(e + 1),

3. e =
⌊

2τ + q − 3
1/ε− q

⌋
,

4. if |β| ≤ w , then pB(P) contains β, otherwise β contains pB(P).

6011

q-gram filters for ε-matches (7)

The purpose of Lemma 2 is as follows. Given parameters ε and n0, we can choose
suitable values for q, τ , w , and e using Lemma 2. Then we enumerate all parallel-
ograms P with enough hits according to these parameters. All relevant ε-matches
can be found in these regions.

6012

q-gram filters for ε-matches (8)

Proof of Lemma 2. The lemma is proven in three steps:

1. Assuming there is an ε-match (α,β) of length |β| = n ≥ n0, show that there are
at least τ q-hits in the surrounding n × bεnc parallelogram.

2. Argue that there is a w × e parallelogram that contains at least τ q-hits, where
w and e do not depend on n ≥ n0.

3. Determine the dimensions w and e of such a parallelogram.

6013

q-gram filters for ε-matches (9)

. . . details omitted . . .

6014

q-gram filters for ε-matches (10)

6015

Algorithm

The SWIFT algorithm relies on the q-gram filter for ε-matches of length n0 or greater.
Using the parameters obtained from Lemma 2, it searches for all w × e parallelo-
grams which contain a sufficient number of q-grams.

6016

Algorithm (2)

In the preprocessing step, we construct a q-gram index for the target sequence A.
The index consists of two tables:

1. The occurrence table is a concatenation of the lists L(G) := { i | A[i ..i + q − 1] =
G } for all q-grams G ∈ Σq in A.

2. The lookup table is an array indexed by the natural encoding of G to base |Σ|,
giving the start of each list in the occurrence table.

6017

Algorithm (3)

Once the q-gram index is built, the w×e parallelograms containing τ or more q-hits
can be found using a simple sliding window algorithm.

The idea is to split the (fictitious) edit matrix into overlapping bins of e + 1 diagonals.
For each bin we count the number of q-hits in the w × e parallelogram that is the
intersection of the diagonals of the corresponding bin and the rows of the sliding
window Wj := B[j ..j + q − 1].

As the sliding window proceeds to Wj+1, the bin counters are updated to reflect the
changes due to the q-grams leaving and entering the window.

Whenever a bin counter reaches τ , the corresponding parallelogram is reported.
Overlapping parallelograms can be merged on the fly.

The space requirement for the bins is reduced by searching for somewhat larger
parallelograms of size w× (e+∆). Then each bin counts for e+∆+1 diagonals, and
successive bins overlap by e diagonals. While this will lead to more verifications, it
reduces the number of bins which have to be maintained. In practice, ∆ is set to a
power of 2, and bin indices are computed with fast bit-operations.

6018

Algorithm (4)

6019

Algorithm (5)

6020

Algorithm (6)

6021

Algorithm (7)

6022

Algorithm (8)

6023

Algorithm (9)

6024

Algorithm (10)

Each ‘candidate’ parallelogram must be checked for the presence of an ε-match.
This can be done trivially by dynamic programming. Alternatively, one can use the
knowledge about the q-grams in the ε-match to construct an alignment by sparse
dynamic programming.

6025

Algorithm (11)

6026

Algorithm (12)

6027

Results

6028

