
Enhanced Suffix Arrays
This exposition is based on the following sources, which are all recommended read-
ing:

1. Mohamed Ibrahim Abouelhoda, Stefan Kurtz, Enno Ohlebusch: Replacing suf-
fix treed with enhanced suffix arrays. Journal of Discrete Algorithms 2 (2004)
53-86.

2. Kasai, Lee, Arimura, Arikawa, Park: Linear-Time Longest-Common-Prefix
Computation in Suffix Arrays and Its Applications, CPM 2001

8000

Introduction

The term enhanced suffix array stands for data structures consisting of a suffix array
and additional tables. We will see that every algorithm that is based on a suffix tree
as its data structure can systematically be replaced with an algorithm that uses an
enhanced suffix array and solves the same problem in the same time complexity.
Very often the new algorithms are not only more space efficient and faster, but also
easier to implement.

8001

Introduction (2)

Suffix trees have many uses. These applications can be classified into three kinds
of tree traversals:

1. A bottom-up traversal of the complete suffix tree.

2. A top-down traversal of a subtree of the suffix tree.

3. A traversal of the suffix tree using suffix links.

An example for bottom-up traversal is the MGA algorithm (MGA = multiple genome
aligment).

An example for top-down traversal is exact pattern matching. We have seen that
the trivial search can be improved from O(m log n) to O(m + log n) if the suffix array
is “enhanced” by an lcp table.

8002

Repeats vs. repeated pairs

Let us recall some definitions and fix terminology. Let S be the underlying sequence
for the suffix array and n := |S|.

• A pair of substrings R = ((i1, j1), (i2, j2)) is a repeated pair iff (i1, j1) 6= (i2, j2) and
S[i1..j1] = S[i2..j2]. The length of R is j1 − i1 + 1.

• R is left maximal iff S[i1 − 1] 6= S[i2 − 1] (i. e., the “left characters” disagree).

• R is right maximal iff S[j1 + 1] 6= S[j2 + 1] (i. e., the “right characters” disagree).

• R is maximal iff it is left maximal and right maximal.

• A substring ω of S is a repeat iff there is a repeated pair R whose consensus
is ω = S[i1..j1].

• Then ω is maximal iff R is.

• A supermaximal repeat is a maximal repeat that never occurs as a substring in
any other maximal repeat.

8003

The basic tables

• suftab: The suffix table. An array of integers in the range 0 to n, specifying the
lexicographic ordering of the n + 1 suffixes of the string S$. Requires 4n bytes.

• sufinv : The inverse of the suffix table. An array of integers in the range 0 to
n such that sufinv[suftab[i]] = i . Can be computed in linear time from suftab.
Requires 4n bytes.

8004

The basic tables (2)

• lcptab: Table for the length of the longest common prefix for consecutive entries
of suftab: lcptab[0] := 0 and lcptab[i] := lcp(Ssuftab[i], Ssuftab[i−1]) for 1 ≤ i ≤ n.
Aka. the height array. Can be computed in linear time from suftab and sufinv
using the algorithm of Kasai et al.. Requires 4n bytes in the worst case, but
usually can be “compressed” to (1 + ε)n bytes.

• bwttab: The Burrows and Wheeler transformation of S. Known from data
compression (e. g. bzip2). Contains the character preceding the suffix stored
in suftab: bwttab[i] := Ssuftab[i]−1 if suftab[i] 6= 0, undefined otherwise. Can be
computed in linear time from suftab. Requires n bytes.

8005

Lcp-intervals

Definition. Let 1 ≤ i < j ≤ n. Then [i ..j] is an lcp-interval of lcp-value ` iff:

1. lcptab[i] < `

2. lcptab[k] ≥ ` for all k with i < k ≤ j

3. lcptab[k] = ` for at least one k with i < k ≤ j
(Such a k is called an `-index .)

4. lcptab[j + 1] < `

Such an [i ..j] will also be called an `-interval or even just “an `-[i ..j]”.

The idea behind `-intervals is that they correspond to internal nodes of the suffix
tree.

The set of all l-indices of an `-interval [i ..j] is denoted by `Indices(i , j).

[i ..j] is the ω-interval , where ω is the longest common prefix of Ssuftab[i], ... , Ssuftab[j].
8006

Lcp-intervals (2)

The example below shows the lcp-interval tree implied by the suftab and lcptab
tables.

0−[0..10]

1−[0..5]3−[2..3]

1−[8..9]

2−[6..7]

2−[4..5]

2−[0..1]

i suftab lcptab bwttab Ssuftab[i]

0 2 c aaacatat$
1 3 2 a aacatat$
2 0 1 acaaacatat$
3 4 3 a acatat$
4 6 1 c atat$
5 8 2 t at$
6 1 0 a caaacatat$
7 5 2 a catat$
8 7 0 a tat$
9 9 1 a t$

10 10 0 t $

8007

Supermaximal repeats

We are now ready to characterize (and in fact, compute) supermaximal repeats
using the basic tables suftab, lcptab, and bwttab.

Definition. An `-interval is a local maximum iff `Indices(i , j) = [i ..j], that is,
lcptab[k] = ` for all i < k ≤ j .

Lemma. A string ω is a supermaximal repeat iff there is an `-interval [i ..j] such that

1. [i ..j] is a local maximum and [i ..j] is the ω-interval, and

2. the “left” characters bwttab[i], ... , bwttab[j] are pairwise distinct.

Proof. It is easy to check that these conditions are necessary and sufficient for ω

being a supermaximal repeat. (Exercise)

Clearly we can find all local maxima in one scan trough lcptab. Thus we already
have an algorithm to enumerate all supermaximal repeats! Note that by the pre-
ceeding lemma, there are at most n of them.

8008

The (virtual) lcp-interval tree

We have already seen in the example that the lcp-intervals are nested.

Definition. We say that an m-interval [l , r] is embedded in an `-interval [i , j] iff
i ≤ l < r ≤ j and m > `. We also say that [i ..j] encloses [l ..r] in this case.

If [i ..j] encloses [l , r], and there is no (third) interval embedded in [i ..j] that also
encloses [l ..r], then [l ..r] is called a child interval of [i ..j]. Conversely, [i ..j] is called
the parent interval of [l ..r] in this case.

The nodes of the lcp-interval tree are in one-to-one correspondence to the internal
nodes of the suffix tree. But the lcp-interval tree is not really built by the algorithm.
It is only a useful concept, similar to a depth-first-search tree.

8009

Bottom-up traversals

In order to perform a bottom-up traversal, we keep the nested lcp-intervals on a
stack. The operations push, pop, and top are defined as usually. The elements on
the stack are the lcp-intervals represented by tuples (lcp, lb, rb): lcp is the lcp-value
of the interval, lb is its left boundary, and rb is its right boundary. Furthermore, ⊥
denotes an undefined value.

8010

Bottom-up traversals (2)

The following algorithm reports all lcp-intervals. ([AKO04], adapted from
[KLAAP01], the last line is a fix [cg] to report the root.)

Algorithm 1. (Bottom-up traversal)
push((0, 0,⊥))
for i := 1 to n do

lb := i − 1
while lcptab[i] < top.lcp

top.rb := i − 1
interval := pop
report(interval)
lb := interval .lb

if lcptab[i] > top.lcp then
push((lcptab[i], lb,⊥))

top.rb = n; interval := pop; report(interval)

8011

Bottom-up traversals (3)

Example. We sketch the run for S = acaaacatat$:

0. Init stack. push(0,0,⊥)

1. while: No. if: Yes. ⇒ push(2,0,⊥)

2. while: Yes. ⇒ report(2,0,1)
while: No. if: Yes. ⇒ push(1,0,⊥)

3. while: No. if: Yes. ⇒ push(3,2,⊥)

4. while: Yes. ⇒ report(3,2,3)
while: No. if: No.

5. while: No. if: Yes. ⇒ push(2,4,⊥)

6. while: Yes. ⇒ report(2,4,5)
while: Yes. ⇒ report(1,0,5)
while: No. if: No.

7. while: No. if: Yes. ⇒ push(2,6,⊥)

8. while: Yes. ⇒ report(2,6,7)
while: No. if: No.

9. while: No. if: Yes. ⇒ push(1,8,⊥)

10. while: Yes. ⇒ report(1,8,9)
while: No. if: No.

11. Clean up stack. report(0,0,10)

8012

Bottom-up traversals (4)

Thus we can generate all lcp-intervals very efficiently. But in order to perform
a meaningful bottom-up traversal, it necessary to propagate information from the
leaves toward the root. Thus every lcp-interval needs to know about its children
when it is ”processed” by the algorithm. The following observation helps.

8013

Bottom-up traversals (5)

Theorem. Let top be the topmost interval on the stack and top−1 be the one next to
it on the stack. (Hence top−1.lcp < top.lcp.) Now assume that lcptab[i] < top.lcp,
so that top will be popped off the stack in the while loop. Then the following holds.

1. If lcptab[i] ≤ top−1.lcp, then top is the child interval of top−1.

2. If top−1.lcp < lcptab[i] < top.lcp, then top is the child interval of the lcptab[i]-
interval that contains i .

In both cases we know the parent of top. – Conversely, every stack entry will know
its childs!

8014

Bottom-up traversals (6)

Proof. The following illustrates the two cases:

pos lcptab[pos]

0123456789...

20 * top_{-1}.lb=20 (=parent.lb if case 1)

21 *----------<

22 *

23 * top.lb=23 (=parent.lb if case 2)

24 . *------<

25 . . *

26 . *

27 . *

28 . *------> top.rb=28, report

i 11111222<====== case (1 or 2)

8015

Bottom-up traversals (7)

Thus we can extend the lcp-interval tuples by a child list : The entries will have the
form (lcp, lb, rb, childList), where childList is the list of its child intervals.

The lists are extended by using a add operation. add([c1, ... , ck], c) appends c to
the list [c1, ... , ck] and returns the result.

In case 1, we add top to the child list of top−1, and top−1 is popped next. Otherwise
(case 2), the while loop is left without assigning a parent for top.

The algorithm of [AKO04] for bottom-up traversal with child information is then as
follows.

8016

Bottom-up traversals (8)

Algorithm 2. (Bottom-up traversal with child information) lastInterval := ⊥
push((0, 0,⊥, []))
for i := 1 to n do

lb := i − 1
while lcptab[i] < top.lcp

top.rb := i − 1
lastInterval := pop
process(lastInterval) // knows about children!
lb := lastInterval .lb
if lcptab[i] ≤ top.lcp then // case (1)

top.childList := add(top.childList , lastInterval)
lastInterval := ⊥

if lcptab[i] > top.lcp then
if lastInterval 6= ⊥ then // case (2)

push((lcptab[i], lb,⊥, [lastInterval]))
lastInterval := ⊥

else
push((lcptab[i], lb,⊥, []))

8017

Bottom-up traversals (9)

Many problems can be solved merely by specifying the function process.

For example, the multiple genome alignment algorithm of Höhl, Kurtz, and Ohle-
busch (Bioinformatics 18(2002)) finds maximal multiple exact matches (multiMEMs)
by bottom-up traversal on an (enhanced) suffix array. (The details shall be worked
out in the exercises.)

Another example given in [AKO04] is computing the Ziv-Lempel decomposition of a
string.

8018

The child table

An optimal top-down traversal requires that we can, for each `-interval, determine
its child intervals in constant time. In order to achieve this goal, the suffix array is
enhanced with additional table childtab.

The childtab contains three values per index: up, down, and next`Index .

For an `-interval [i ..j] with `-indices i1 < i2 < ... < ik , we have childtab[i].down = i1
or childtab[j + 1].up = i1. (Or both; the exact details are a bit more complicated, see
a lemma below).

Moreover,

childtab[ip].next`Index = ip+1 for p = 1, ... , k − 1 .

8019

The child table (2)

Definitions.

childtab[i].up :=

min{q ∈ [0..i−1] | lcptab[q] > lcptab[i] and
∀k ∈ [q+1..i−1] : lcptab[k] ≥ lcptab[q] }

childtab[i].down :=

max{q ∈ [i+1..n] | lcptab[q] > lcptab[i] and
∀k ∈ [i+1..q−1] : lcptab[k] > lcptab[q] }

childtab[i].next`Index :=

min{q ∈ [i+1..n] | lcptab[q] = lcptab[i] and
∀k ∈ [i+1..q−1] : lcptab[k] > lcptab[i] }

Undefined values (min ∅, max ∅) are set to ⊥. (Labels (1.) and (2.) are referred to
in proof below.)

8020

The child table (3)

Example. (Only partial information is shown in the table.)

i suftab lcptab up down next`... Ssuftab[i]

0 2 0 2 6 aaacatat$

1 3 2 aacatat$

2 0 1 1 3 4 acaaacatat$

3 4 3 acatat$

4 6 1 3 5 atat$

5 8 2 at$

6 1 0 2 7 8 caaacatat$

7 5 2 catat$

8 7 0 7 9 10 tat$

9 9 1 t$

10 10 0 9 $

8021

The child table (4)

Lemma. Assume we have an `-interval [i ..j] with `-indices i1 < i2 < ... < ik . Then
the child intervals of [i ..j] are

[i .. i1 − 1]

[i1 .. i2 − 1]

...

[ik−1 .. ik − 1]

[ik .. j] .

Some of these can be singleton intervals.

8022

The child table (5)

Example.

0−[0..10]

1−[0..5]3−[2..3]

1−[8..9]

2−[6..7]

2−[4..5]

2−[0..1]

i suftab lcptab up down next`... Ssuftab[i]

0 2 0 2 6 aaacatat$
1 3 2 aacatat$
2 0 1 1 3 4 acaaacatat$
3 4 3 acatat$
4 6 1 3 5 atat$
5 8 2 at$
6 1 0 2 7 8 caaacatat$
7 5 2 catat$
8 7 0 7 9 10 tat$
9 9 1 t$

10 10 0 9 $

8023

The child table (6)

Lemma. The child table can be constructed in linear time using the algorithm for
bottom-up traversal with child information.

Proof. Exercise.

Note: [AKO04] actually give two (more direct) algorithms to separately construct the
up/down values and the next`Index values of the child table.

8024

The child table (7)

The child table can be ”compressed” so that it uses only one instead of three fields
“.up” “.down” and “.next`Index” because they contain (to some extent) redundant
information. One can then reconstruct the full information by some redirections and
case distinctions. We omit the rather tricky details.

Thus the three names are only used for clarity of exposition, and the space require-
ment for the childtab table is 4 bytes per character.

8025

Top-down traversals

Now we show how the child table can be used to perform a top-down traversal of
a (virtual) suffix tree that is actually represented by an enhanced suffix array with
childtab and lcptab information.

We want to retrieve the child intervals of an `-interval [i ..j] in constant time. The first
step is to find the position of the first `-index in [i ..j] (i. e., the minimum of the set
`Indices[i .j]).

The following lemma shows that this is possible with the help of the .up and .down
fields of the childtab.

8026

Top-down traversals (2)

Lemma. For every `-interval [i ..j] the following holds:

1. We have i < childtab[j + 1].up ≤ j or i < childtab[i].down ≤ j .

2. If i < childtab[j + 1].up ≤ j , then childtab[j + 1].up stores the first `-index in
[i ..j].

3. If i < childtab[i].down ≤ j , then childtab[i].down stores the first `-index in
[i ..j].

Corollary. The following function getlcp(i , j) returns the lcp-value of an lcp-interval
[i ..j] in constant time:

getlcp (i, j)
if (i < childtab[j + 1].up ≤ j)
then

return childtab[j + 1].up
else

return childtab[i].down
8027

Top-down traversals (3)

Proof. Let u := childtab[j + 1].up and d := childtab[i].down.

By definition of the .up and.down fields, it is clear that u ≤ j and i < d .

Since [i ..j] is an `-interval, we have lcptab[i] < ` and lcptab[j + 1] < ` and ∀k ∈
[i+1..j] : lcptab[k] ≥ `.

Proof of (1.)
Case 1: lcptab[i] ≥ lcptab[j + i]
Then d < j + 1, because otherwise we had i < j + 1 ≤ d and hence, by definition of
.down, lcptab[j + i] ≥ lcptab[d] > lcptab[i]. Thus i < d ≤ j and (1) holds.
Case 2: lcptab[i] < lcptab[j + i]
Then i < u, because otherwise we had u ≤ i < j + 1 and hence, by definition of
.up, lcptab[i] ≥ lcptab[u] > lcptab[j + 1]. Thus i < u ≤ j + 1 and again, (1) holds.

8028

Top-down traversals (4)

For the proof of (2) and (3), let f be the first `-index in [i ..j].

Proof of (2.)
Assume i < u < j . Thus lcptab[u] ≥ `. We have u ≤ f because [i ..j] has at least
one `-index, and every `-index satisfies the conditions for the set in the definition of
.up. On the other hand, u ≥ f because otherwise we had u < f < j + 1 and hence,
lcptab[u] < lcptab[f] (= `) according to the definition of .up. Thus f = u as claimed.

Proof of (3.)
Assume i < d < j + 1. Thus lcptab[d] ≥ `. We have d ≥ f because f satisfies the
conditions of the set in the definition of .down. On the other hand, we have d ≤ f
because otherwise, i < f < d and hence, lcptab[f] > lcptab[d] (≥ `) according to
the definition of .down. Thus f = d as claimed.

�

8029

Top-down traversals (5)

Once the first `-index of an `-interval [i ..j] has been found, the remanining `-indices
i2 < i3 < ... < ik , where 1 ≤ k ≤ Σ, can obtained successively using the next`Index
fields.
Algorithm.
getChildIntervals(`-[i..j] : lcp-interval)
intervalList = []
if (i < childtab[j + 1].up ≤ j)

then i1 = childtab[j + 1].up
else i1 = childtab[i].down

add(intervalList, (i , i1 − 1))
while (childtab[i1].next`Index 6= ⊥) do

i2 := childtab[i1].next`Index
add(intervalList, (i1, i2 − 1))
i1 = i2

add(intervalList, (i1, j))

8030

Top-down traversals (6)

Since |Σ| is a constant, algorithm getChildIntervals runs in constant time.

Using getChildIntervals, one can simulate every top-down traversal of a suffix tree
on an enhanced suffix array.

For example, one can easily modify the function getChildIntervals to a function get-
Interval that takes as arguments an `-interval [i ..j] and a character a ∈ Σ and returns
the child interval [l ..r] of [i ..j] whose suffixes have a character a at position `. (If no
such subinterval exists, we return ⊥.)

8031

Top-down traversals (7)

Using a top-down traversal, one can search for a pattern P in optimal |P| time, as
explained in the next section.

Another application mentioned in [AKO04] is finding all shortest unique substrings.
This problem arises e. g. in the design of PCR primers. A substring of S is unique
if it occurs only once in S. The shortest unique substring problem is to find all
shortest unique substrings of S. For example, acac has only one shortest unique
substring, ac. It is easy to see that unique substrings of S correspond to singleton
lcp-intervals. Among those, we want to enumerate all with the minimal lcp value.
This can be accomplished by a breadth-first-search traversal of the lcp-interval tree.

8032

Searching for substrings in optimal time

Algorithm.
answering decision queries(P : pattern)
c := 0 // current pattern position
queryFound := true
(i , j) := getInterval(0, n, P[c])
while ((i , j) 6= ⊥ and c < m and queryFound = true)

if (i 6= j)
then

` := getlcp(i , j)
min := min{`, m}
queryFound :=

(
S[suftab[i]+c .. suftab[i]+min−1] == P[c..min−1]

)
c := min
(i , j) := getInterval(i , j , P[c])

else
queryFound :=

(
S[suftab[i]+c .. suftab[i]+m−1] == P[c..m−1]

)
if (queryFound)

then report (i , j) // the P-interval of suftab
else report ”P not found”

8033

Searching for substrings in optimal time (2)

The running time of the suffix array based algorithm is O(|P|), the same as for the
suffix tree based algorithm.

Enumerative queries can be answered in optimal (O(|P| + z) time, where z is the
number of occurrences of P. The algorithm is the same, however instead of report-
ing (i , j), we output suftab[i], ... suftab[j].

8034

