Enhanced Suffix Arrays

This exposition is based on the following sources, which are all recommended reading:

1. Mohamed Ibrahim Abouelhoda, Stefan Kurtz, Enno Ohlebusch: Replacing suffix treed with enhanced suffix arrays. Journal of Discrete Algorithms 2 (2004) 53-86.
2. Kasai, Lee, Arimura, Arikawa, Park: Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its Applications, CPM 2001

Introduction

The term enhanced suffix array stands for data structures consisting of a suffix array and additional tables. We will see that every algorithm that is based on a suffix tree as its data structure can systematically be replaced with an algorithm that uses an enhanced suffix array and solves the same problem in the same time complexity. Very often the new algorithms are not only more space efficient and faster, but also easier to implement.

Introduction

Suffix trees have many uses. These applications can be classified into three kinds of tree traversals:

1. A bottom-up traversal of the complete suffix tree.
2. A top-down traversal of a subtree of the suffix tree.
3. A traversal of the suffix tree using suffix links.

An example for bottom-up traversal is the MGA algorithm (MGA = multiple genome aligment).

An example for top-down traversal is exact pattern matching. We have seen that the trivial search can be improved from $O(m \log n)$ to $O(m+\log n)$ if the suffix array is "enhanced" by an Icp table.

Repeats vs. repeated pairs

Let us recall some definitions and fix terminology. Let S be the underlying sequence for the suffix array and $n:=|S|$.

- A pair of substrings $R=\left(\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)\right)$ is a repeated pair iff $\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right)$ and $S\left[i_{1} . . j_{1}\right]=S\left[i_{2} \ldots j_{2}\right]$. The length of R is $j_{1}-i_{1}+1$.
- R is left maximal iff $S\left[i_{1}-1\right] \neq S\left[i_{2}-1\right]$ (i. e., the "left characters" disagree).
- R is right maximal iff $S\left[j_{1}+1\right] \neq S\left[j_{2}+1\right]$ (i.e., the "right characters" disagree).
- R is maximal iff it is left maximal and right maximal.
- A substring ω of S is a repeat iff there is a repeated pair R whose consensus is $\omega=S\left[i_{1} . . j_{1}\right]$.
- Then ω is maximal iff R is.
- A supermaximal repeat is a maximal repeat that never occurs as a substring in any other maximal repeat.

The basic tables

- suftab: The suffix table. An array of integers in the range 0 to n, specifying the lexicographic ordering of the $n+1$ suffixes of the string $S \$$. Requires $4 n$ bytes.
- sufinv: The inverse of the suffix table. An array of integers in the range 0 to n such that sufinv[suftab[i]] = i. Can be computed in linear time from suftab. Requires $4 n$ bytes.

The basic tables

- Icptab: Table for the length of the longest common prefix for consecutive entries of suftab: Icptab[0]:= 0 and $\operatorname{Icptab}[i]:=\operatorname{Icp}\left(S_{\text {suftab }[i]}, S_{\text {suftab }[i-1]}\right)$ for $1 \leq i \leq n$. Aka. the height array. Can be computed in linear time from suftab and sufinv using the algorithm of Kasai et al.. Requires $4 n$ bytes in the worst case, but usually can be "compressed" to $(1+\varepsilon) n$ bytes.
- bwttab: The Burrows and Wheeler transformation of S. Known from data compression (e.g. bzip2). Contains the character preceding the suffix stored in suftab: bwttab[i]:= $S_{\text {suftab[i]-1 }}$ if suftab[[]$\neq 0$, undefined otherwise. Can be computed in linear time from suftab. Requires n bytes.

Lcp-intervals

Definition. Let $1 \leq i<j \leq n$. Then $[i . . j]$ is an Icp-interval of Icp-value ℓ iff:

1. Icptab[i] $<\ell$
2. Icptab[k] $\geq \ell$ for all k with $i<k \leq j$
3. $\operatorname{lcptab}[k]=\ell$ for at least one k with $i<k \leq j$ (Such a k is called an ℓ-index.)
4. Icptab $[j+1]<\ell$

Such an $[i . . j]$ will also be called an ℓ-interval or even just "an $\ell-[i . . j]$ ".
The idea behind ℓ-intervals is that they correspond to internal nodes of the suffix tree.

The set of all I-indices of an ℓ-interval [i...] is denoted by $\ell \operatorname{Indices}(i, j)$.
$[i . . j]$ is the ω-interval, where ω is the longest common prefix of $S_{\text {suftab }[i]}, \ldots, S_{\text {suftabij }] \text {. }}$.

Lcp-intervals

The example below shows the Icp-interval tree implied by the suftab and Icptab tables.

i	suftab	lcptab	bwttab	$S_{\text {Suftab }[i]}$
0	2		c	aaacatat\$
1	3	2	a	aacatat\$
2	0	1		acaaacatat\$
3	4	3	a	acatat\$
4	6	1	c	atat\$
5	8	2	t	at\$
6	1	0	a	caaacatat\$
7	5	2	a	catat\$
8	7	0	a	tat\$
9	9	1	a	t\$
10	10	0	t	$\$$

Supermaximal repeats

We are now ready to characterize (and in fact, compute) supermaximal repeats using the basic tables suftab, Icptab, and bwttab.

Definition. An ℓ-interval is a local maximum iff ℓ Indices $(i, j)=[i . . j]$, that is, lcptab $[k]=\ell$ for all $i<k \leq j$.

Lemma. A string ω is a supermaximal repeat iff there is an ℓ-interval [i...] such that

1. [i...] is a local maximum and [i..j] is the ω-interval, and
2. the "left" characters bwttab[i], ... ,bwttab[j] are pairwise distinct.

Proof. It is easy to check that these conditions are necessary and sufficient for ω being a supermaximal repeat. (Exercise)

Clearly we can find all local maxima in one scan trough Icptab. Thus we already have an algorithm to enumerate all supermaximal repeats! Note that by the preceeding lemma, there are at most n of them.

The (virtual) Icp-interval tree

We have already seen in the example that the Icp-intervals are nested.
Definition. We say that an m-interval $[I, r]$ is embedded in an ℓ-interval $[i, j]$ iff $i \leq I<r \leq j$ and $m>\ell$. We also say that $[i . . j]$ encloses $[I . . r]$ in this case.

If $[i . . j]$ encloses $[I, r]$, and there is no (third) interval embedded in [i..j] that also encloses [$/ . . r]$, then $[/ . . r]$ is called a child interval of $[i . . j]$. Conversely, $[i . . j]$ is called the parent interval of $[1 . . r]$ in this case.

The nodes of the Icp-interval tree are in one-to-one correspondence to the internal nodes of the suffix tree. But the Icp-interval tree is not really built by the algorithm. It is only a useful concept, similar to a depth-first-search tree.

Bottom-up traversals

In order to perform a bottom-up traversal, we keep the nested Icp-intervals on a stack. The operations push, pop, and top are defined as usually. The elements on the stack are the Icp-intervals represented by tuples (Icp, Ib, rb): Icp is the Icp-value of the interval, lb is its left boundary, and $r b$ is its right boundary. Furthermore, \perp denotes an undefined value.

Bottom-up traversals

The following algorithm reports all Icp-intervals. ([AKOO4], adapted from [KLAAP01], the last line is a fix [cg] to report the root.)

Algorithm 1. (Bottom-up traversal)
push($(0,0, \perp))$
for $i:=1$ to n do
$l b:=i-1$
while Icptab[i] < top.Icp
top.rb := $i-1$
interval := pop
report(interval)
lb := interval.Ib
if $/ c p t a b[i]>$ top. $/ c p$ then
push((Icptab[i], Ib, \perp))
top.rb $=n$; interval $:=$ pop; report(interval)

Bottom-up traversals

Example. We sketch the run for $S=$ acaaacatat $\$$:
0. Init stack.
$\operatorname{push}(0,0, \perp)$

1. while: No. if: Yes. \Rightarrow
2. while: Yes. \Rightarrow
while: No. if: Yes. \Rightarrow
3. while: No. if: Yes. \Rightarrow
4. while: Yes. \Rightarrow while: No. if: No.
5. while: No. if: Yes. \Rightarrow
6. while: Yes. \Rightarrow
while: Yes. \Rightarrow
while: No. if: No.
7. while: No. if: Yes. \Rightarrow
8. while: Yes. \Rightarrow while: No. if: No.
9. while: No. if: Yes. \Rightarrow
10. while: Yes. \Rightarrow while: No. if: No.
11. Clean up stack.
push($2,0, \perp$)
report(2,0,1)
push $(1,0, \perp)$
push $(3,2, \perp)$
report(3,2,3)
push $(2,4, \perp)$
report(2,4,5)
report(1,0,5)
push $(2,6, \perp)$
report(2,6,7)
push $(1,8, \perp)$
report(1,8,9)
report($0,0,10$)

Bottom-up traversals

Thus we can generate all Icp-intervals very efficiently. But in order to perform a meaningful bottom-up traversal, it necessary to propagate information from the leaves toward the root. Thus every Icp-interval needs to know about its children when it is "processed" by the algorithm. The following observation helps.

Bottom-up traversals

Theorem. Let top be the topmost interval on the stack and top p_{-1} be the one next to it on the stack. (Hence top ${ }_{-1}$.Icp < top.Icp.) Now assume that Icptab[i] < top.Icp, so that top will be popped off the stack in the while loop. Then the following holds.

1. If $/ c p t a b[i] \leq t o p_{-1} . l c p$, then top is the child interval of top p_{-1}.
2. If top ${ }_{-1}$. $\mathrm{Icp}<\operatorname{Icptab}[i]<$ top.Icp, then top is the child interval of the Icptab[i]interval that contains i.

In both cases we know the parent of top. - Conversely, every stack entry will know its childs!

Bottom-up traversals

Proof. The following illustrates the two cases:

Bottom-up traversals

Thus we can extend the lcp-interval tuples by a child list: The entries will have the form (lcp, lb, rb, childList), where childList is the list of its child intervals.

The lists are extended by using a add operation. add $\left(\left[c_{1}, \ldots, c_{k}\right], c\right)$ appends c to the list $\left[c_{1}, \ldots, c_{k}\right]$ and returns the result.

In case 1, we add top to the child list of top $_{-1}$, and top ${ }_{-1}$ is popped next. Otherwise (case 2), the while loop is left without assigning a parent for top.

The algorithm of [AKO04] for bottom-up traversal with child information is then as follows.

Bottom-up traversals

Algorithm 2. (Bottom-up traversal with child information) lastInterval := \perp $\operatorname{push}((0,0, \perp,[]))$
for $i:=1$ to n do

$$
l b:=i-1
$$

while Icptab[i] < top.Icp
top.rb := i-1
lastInterval := pop
process(lastInterval) // knows about children!
lb := lastInterval./lb
if Icptab[$[\mathrm{i}] \leq$ top. Icp then // case (1)
top.childList := add(top.childList, lastInterval)
lastInterval $:=\perp$
if Icptab[[]$>$ top. $/ c p$ then
if last/nterval $\neq \perp$ then // case (2)
push((Icptab[i], Ib, $\perp,[$ last/nterval]))
lastInterval := \perp
else
push((Icptab[i], lb, $\perp,[]))$

Bottom-up traversals

Many problems can be solved merely by specifying the function process.
For example, the multiple genome alignment algorithm of Höhl, Kurtz, and Ohlebusch (Bioinformatics 18(2002)) finds maximal multiple exact matches (multiMEMs) by bottom-up traversal on an (enhanced) suffix array. (The details shall be worked out in the exercises.)

Another example given in [AKO04] is computing the Ziv-Lempel decomposition of a string.

The child table

An optimal top-down traversal requires that we can, for each ℓ-interval, determine its child intervals in constant time. In order to achieve this goal, the suffix array is enhanced with additional table childtab.

The childtab contains three values per index: up, down, and nexteIndex.
For an ℓ-interval [$i . .$.$] with \ell$-indices $i_{1}<i_{2}<\ldots<i_{k}$, we have childtab[i]. down $=i_{1}$ or childtab $[j+1]$.up $=i_{1}$. (Or both; the exact details are a bit more complicated, see a lemma below).

Moreover,

$$
\text { childtab[} \left.i_{p}\right] \text {.nexteIndex }=i_{p+1} \quad \text { for } p=1, \ldots, k-1 .
$$

The child table

Definitions.

```
childtab[i].up :=
    \(\min \{q \in[0 . . i-1]|I c p t a b[q]>| c p t a b[i]\) and
    \(\forall k \in[q+1 . . i-1]: I c p t a b[k] \geq I c p t a b[q]\}\)
```

childtab[i].down :=

$$
\begin{aligned}
\max \{q \in[i+1 . . n] \mid & \text { Icptab[q]>Icptab[i] and } \\
& \forall k \in[i+1 . . q-1]: \text { Icptab }[k]>\operatorname{Icptab}[q]\}
\end{aligned}
$$

childtab[i].nextlIndex :=

$$
\begin{array}{ll}
\min \{q \in[i+1 . . n] \mid & \text { Icptab[q]=Icptab[i] and } \\
& \forall k \in[i+1 . . q-1]: \text { Icptab }[k]>\operatorname{Icptab}[i]\}
\end{array}
$$

Undefined values $(\min \emptyset, \max \emptyset)$ are set to \perp. (Labels (1.) and (2.) are referred to in proof below.)

The child table

Example. (Only partial information is shown in the table.)

i	suftab	Icptab	up	down	next $\ell .$.	$S_{\text {suftab }[i]}$
0	2	0		2	6	aaacatat $\$$
1	3	2				aacatat $\$$
2	0	1	1	3	4	acaaacatat\$
3	4	3				acatat\$
4	6	1	3	5		atat $\$$
5	8	2				at\$
6	1	0	2	7	8	caaacatat\$
7	5	2				catat\$
8	7	0	7	9	10	tat\$
9	9	1				t\$
10	10	0	9			$\$$

The child table

Lemma. Assume we have an ℓ-interval [$i . . j]$ with ℓ-indices $i_{1}<i_{2}<\ldots<i_{k}$. Then the child intervals of [i..j] are

$$
\begin{gathered}
{\left[i_{i} . i_{1}-1\right]} \\
{\left[i_{1} . . i_{2}-1\right]} \\
\ldots \\
{\left[i_{k-1} . . i_{k}-1\right]} \\
{\left[i_{k} . . j\right] .}
\end{gathered}
$$

Some of these can be singleton intervals.

The child table

Example.

i	suftab	lcptab	up	down	next \ldots	$S_{\text {Suftab }[i]}$
0	2	0		2	6	aaacatat\$
1	3	2				aacatat\$
2	0	1	1	3	4	acaaacatat\$
3	4	3				acatat\$
4	6	1	3	5		atat\$
5	8	2				at\$
6	1	0	2	7	8	caaacatat\$
7	5	2				catat\$
8	7	0	7	9	10	tat\$
9	9	1				t\$
10	10	0	9			$\$$

The child table

Lemma. The child table can be constructed in linear time using the algorithm for bottom-up traversal with child information.

Proof. Exercise.
Note: [AKO04] actually give two (more direct) algorithms to separately construct the up/down values and the nextelndex values of the child table.

The child table

The child table can be "compressed" so that it uses only one instead of three fields ".up" ".down" and ".nextlIndex" because they contain (to some extent) redundant information. One can then reconstruct the full information by some redirections and case distinctions. We omit the rather tricky details.

Thus the three names are only used for clarity of exposition, and the space requirement for the childtab table is 4 bytes per character.

Top-down traversals

Now we show how the child table can be used to perform a top-down traversal of a (virtual) suffix tree that is actually represented by an enhanced suffix array with childtab and Icptab information.

We want to retrieve the child intervals of an ℓ-interval $[i . . j]$ in constant time. The first step is to find the position of the first ℓ-index in [i..j] (i. e., the minimum of the set eIndices[i.j]).

The following lemma shows that this is possible with the help of the .up and .down fields of the childtab.

Top-down traversals

Lemma. For every ℓ-interval [i...] the following holds:

1. We have $i<$ childtab $[j+1]$.up $\leq j$ or $i<$ childtab[$i]$.down $\leq j$.
2. If $i<\operatorname{childtab}[j+1]$.up $\leq j$, then childtab $[j+1]$.up stores the first ℓ-index in [i..j].
3. If $i<$ childtab[j].down $\leq j$, then childtab[[] .down stores the first ℓ-index in [i..j].

Corollary. The following function getlcp(i, j) returns the Icp-value of an Icp-interval [i..j] in constant time:
getlcp (i, j)
if ($i<\operatorname{childtab}[j+1] . u p \leq j$)
then
return childtab[j + 1].up
else
return childtab[i].down

Top-down traversals

Proof. Let $u:=$ childtab $[j+1] . u p$ and $d:=c h i l d t a b[i] . d o w n$.
By definition of the .up and. down fields, it is clear that $u \leq j$ and $i<d$.
Since [i..j] is an ℓ-interval, we have Icptab[$i]<\ell$ and $\operatorname{Icptab}[j+1]<\ell$ and $\forall k \in$ $[i+1 . . j]: \operatorname{lcptab}[k] \geq \ell$.

Proof of (1.)
Case 1: Icptab[i] \geq Icptab[$j+i]$
Then $d<j+1$, because otherwise we had $i<j+1 \leq d$ and hence, by definition of .down, Icptab[$j+i] \geq$ Icptab[d] $>$ Icptab[$i]$. Thus $i<d \leq j$ and (1) holds.
Case 2: Icptab[i] < Icptab[j + i]
Then $i<u$, because otherwise we had $u \leq i<j+1$ and hence, by definition of .up, Icptab[i] \geq Icptab[u] > Icptab[$j+1]$. Thus $i<u \leq j+1$ and again, (1) holds.

Top-down traversals

For the proof of (2) and (3), let f be the first ℓ-index in [i..j].

Proof of (2.)

Assume $i<u<j$. Thus Icptab[u] $\geq \ell$. We have $u \leq f$ because [i..j] has at least one ℓ-index, and every ℓ-index satisfies the conditions for the set in the definition of .up. On the other hand, $u \geq f$ because otherwise we had $u<f<j+1$ and hence, $\operatorname{Icptab}[u]<\operatorname{Icptab}[f](=\ell)$ according to the definition of .up. Thus $f=u$ as claimed.

Proof of (3.)

Assume $i<d<j+1$. Thus Icptab[$[d] \geq \ell$. We have $d \geq f$ because f satisfies the conditions of the set in the definition of .down. On the other hand, we have $d \leq f$ because otherwise, $i<f<d$ and hence, Icptab[f] > Icptab[d] ($\geq \ell$) according to the definition of .down. Thus $f=d$ as claimed.

Top-down traversals

Once the first ℓ-index of an ℓ-interval [i..j] has been found, the remanining ℓ-indices $i_{2}<i_{3}<\ldots<i_{k}$, where $1 \leq k \leq \Sigma$, can obtained successively using the nextl Index fields.
Algorithm.
getChildIntervals($\ell-[i . . j]$: Icp-interval)
intervalList = []
if ($i<$ childtab[$j+1]$.up $\leq j$)
then $i_{1}=$ childtab $[j+1]$.up
else $i_{1}=$ childtab[[] .down
add(intervalList, ($\left(i_{1}-1\right)$)
while (childtab $\left[i_{1}\right]$.nexte Index $\neq \perp$) do
$i_{2}:=$ childtab $\left[i_{1}\right]$.nexte Index
add(intervalList, $\left(i_{1}, i_{2}-1\right)$)
$i_{1}=i_{2}$
add(intervalList, $\left.\left(i_{1}, j\right)\right)$

Top-down traversals

Since $|\Sigma|$ is a constant, algorithm getChildlntervals runs in constant time.
Using getChildlntervals, one can simulate every top-down traversal of a suffix tree on an enhanced suffix array.

For example, one can easily modify the function getChildlntervals to a function getInterval that takes as arguments an ℓ-interval [i..j] and a character $a \in \Sigma$ and returns the child interval $[1 . . r]$ of $[i . . j]$ whose suffixes have a character a at position ℓ. (If no such subinterval exists, we return \perp.)

Top-down traversals

Using a top-down traversal, one can search for a pattern P in optimal $|P|$ time, as explained in the next section.

Another application mentioned in [AKO04] is finding all shortest unique substrings. This problem arises e.g. in the design of PCR primers. A substring of S is unique if it occurs only once in S. The shortest unique substring problem is to find all shortest unique substrings of S. For example, acac has only one shortest unique substring, ac. It is easy to see that unique substrings of S correspond to singleton Icp-intervals. Among those, we want to enumerate all with the minimal Icp value. This can be accomplished by a breadth-first-search traversal of the Icp-interval tree.

Searching for substrings in optimal time

```
Algorithm.
answering_decision_queries( P : pattern)
c:=0 // current pattern position
queryFound := true
(i, j) := getInterval(0,n, P[c])
while ( (i,j)\not=\perp and c<m and queryFound = true )
    if (i\not=j)
    then
        \ell : = \operatorname { g e t l c p } ( i , j )
        min := min{\ell,m}
        queryFound := (S[suftab[i]+c .. suftab[i]+min-1] == P[c..min-1])
        c:= min
    (i,j) := getInterval(i, j, P[c])
    else
    queryFound := (S[suftab[i]+c .. suftab[i]+m-1] == P[c..m-1])
if (queryFound )
    then report (i,j)
                                // the P-interval of suftab
    else report "P not found"
```


Searching for substrings in optimal time

The running time of the suffix array based algorithm is $O(|P|)$, the same as for the suffix tree based algorithm.

Enumerative queries can be answered in optimal $(O(|P|+z)$ time, where z is the number of occurrences of P. The algorithm is the same, however instead of reporting (i, j), we output suftab[i], ... suftab[j].

