
An experimental study of an opportunistic index 

P a o l o  F e r r a g i n a *  G i o v a n n i  M a n z i n i  t 

A b s t r a c t  
The size of electronic data is currently growing at a faster 
rate than computer memory and disk storage capacities. 
For this reason compression appears always as an attractive 
choice, if not mandatory. However space overhead is not the 
only resource to be optimized when managing large data 
collections; in fact data turn out to be useful only when 
properly indexed to support search operations that efficiently 
extract the user-requested information. 

Approaches to combine compression and indexing tech- 
niques are nowadays receiving more and more attention. A 
first step towards the design of a compressed full-text index 
achieving guaranteed performance in the worst case has been 
recently done in [10]. This index combines the compression 
algorithm proposed by Burrows. and Wheeler [5] with the 
suffix array data structure [16]. The index is opportunistic 
in that it takes advantage of the compressibility of the in- 
put data by decreasing the space occupancy at no significant 
asymptotic slowdown in the query performance. 

In this paper we present an implementation of this index 
and perform an extensive set of experiments on various 
text collections. The experiments show that our index is 
compact (its space occupancy is close to the one achieved 
by the best known compressors), it is fast in counting 
the number of pattern occurrences, and the cost of their 
retrieval is reasonable when they are few (i.e., in case of a 
selective query). In addition, our experiments show that 
the FM-index is flexible in that it is possible to trade 
space occupancy for search time by choosing the amount 
of auxiliary information stored into it. 

1 I n t r o d u c t i o n  

The study, the design and the experimentation of meth- 
ods for searching and updating text collections have at- 
t racted the attention of the algorithmic and data  struc- 
tural  community during the last five decades. Pre- 
cious ideas have been presented in the main l i te ra ture- -  
inverted lists, Patricia trees, tries, ternary search trees, 
suffix trees, suffix arrays, just to cite a few--and they 
constitute the heart  of several software tools currently 
used for processing textual  data. The research in this 
area has been recently re-vitalized by new interesting 
applications as digital libraries, office automation sys- 
tems, SGML/XML tagged text collections, document 
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and genome databases, web search engines, etc.. In 
most cases the text collections are so large that  scan- 
based (i.e. grep-like) approaches are not appropriate,  
and d a t a  structures supporting effective and powerful 
search operations become mandatory.  

The main idea underlying data  structures for text 
searching is to build an index tha t  allows to focus the 
search for a given pat tern  only on a small portion of 
the input text. The improvement in the query perfor- 
mance is paid by the additional space necessary to store 
the index. Most of the research in this field has been 
therefore directed to design da ta  structures which offer 
a good trade-off between query and update  t ime ver- 
sus space usage. In this context compression appears 
always as an at tract ive choice, especially in the light of 
the significant increase in CPU speed that  makes more 
economical to store da ta  in compressed form than un- 
compressed. It  goes without saying that  compression 
may also introduce some improvements which are sur- 
prisingly not confined to the space occupancy: "space 
optimization is closely related to time optimization in a 
disk memory" [14]. 

Start ing from these promising considerations, many 
researchers have recently tried to combine text compres- 
sion with indexing techniques and searching algorithms. 
They have mainly investigated the compressed match- 
ing problem for various compression schemes: for ex- 
ample LZ77 [8], LZ78 [1], Huffman [19], Antidictionar- 
ies [6, 23]. Although these algorithms result asymptoti-  
cally faster than the classical scan-based methods, their 
overall t ime requirement may be yet too high since they 
rely on a full scan of the compressed text. 

Some authors have tried to plug classical indexing 
tools--l ike inverted lists [24] or suffix arrays [18]--upon 
compressed texts and achieved experimental trade-offs 
between space occupancy and query performance (see 
e.g. Glimpse [17]). Other  authors [12, 15, 21] have 
instead proposed techniques to represent succinctly the 
index itself and still support  effective search operations; 
however, the space occupancy of their da ta  structures 
grows linearly with the size of the indexed text. 

The first step towards the design of a compressed 
index ensuring effective search performance in the worst 
case has been recently pursued in [10]. The novelty of 
the approach in [10] resides in the careful combination 
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of the Burrows-Wheeler compression algorithm [5] with 
the suffix array data structure [16] to obtain a sort of 
compressed sul~ix array (see Section 2). The resulting 
index is opportunistic in that,  although no assumption 
on a particular fixed distribution is made, it takes 
advantage of the compressibility of the input data  
by decreasing the space occupancy at no significant 
asymptotic slowdown in the query performance. More 
precisely in [10] it is proven that  the space required to 
index a text T is O(Hk(T))+o(1) bits per text character, 
where Hk(T) is the k-th order empirical entropy of T 
(the bound holds for any fixed k > 0). We point out 
that  this index also includes the compressed text. The 
index allows to count the number of occurrences of an 
arbitrary pattern P[1,p] in O(p) time, and list them 
in O(log ~ u) time per occurrence, where e > 0 is an 
arbitrarily fixed constant. Since this is a Full-text index 
and occupies Minute space, in the following it will be 
shortly called FM-index. 

Notice that  there exists in the literature another 
family of indices, called word-based indices, which in- 
cludes for example inverted lists and signature files [24]. 
Although much compact in space, these indices sup- 
port only word-based queries so that  their effective ap- 
plication is limited to linguistic texts. Full-text indices 
are therefore more flexible. For example, they allow to 
search for arbitrary substrings in text collections--like 
DNA sequences or oriental languages--where word de- 
limiters are not so clear. 

Given the appealing asymptotical performance and 
structural properties of the FM-index, it is interesting 
to investigate its behavior in an experimental setting. In 
this paper we describe an implementation of this index 
and perform an extensive set of experiments on vari- 
ous kinds of texts: plain text,  DNA sequence, SGML- 
tagged file, .html and . j a v a  source. We have also 
compared the FM-index against three kinds of search- 
ing/indexing tools: ternary search trees [4], compressed 
string-matching algorithms (zgrep-like), and suffix array 
data  structure [16]. These experiments show that  the 
FM-index is compact (its space occupancy is close to 
the one achieved by the best known compressors), it is 
fast in counting the number of pattern occurrences, and 
the cost of their retrieval is reasonable when they are 
few (i.e. in case of a selective query). In addition, our 
experiments show that  the FM-index is flexible in that  
it is possible to trade space occupancy for search time 
by choosing the amount of auxiliary information stored 
into it. 

2 Background 

Let T[1,u] denote a text over the alphabet ~. The 
Burrows-Wheeler compression algorithm is based on a 
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mississippi# # mississippi 
ississippi#m i #mississip p 
ssissippi#mi i ppi#missis s 
sissippi~mis i ssippi#mis s 
issippi#miss i ssissippi# m 
ssippi#missi ~ mississippi # 
sippi#missis p i#mississi p 
ippi#mississ p pi#mississ i 
ppi#mississi s ippi#missi s 
pi#mississip s issippi#mi s 
i#mississipp s sippi#miss i 
#mississippi s sissippi#m i 

Figure 1: Example of Burrows-Wheeler transform for 
the string T = m i s s i s s i p p i .  The matrix on the right 
has the rows sorted in lexicographic order. The output  
of the BW T is column L; in this example the string 
ipssm#pissii. 

reversible transformation, called BW-Transform (BWT 
from now on) which transforms the input text T into 
a new string which contains the same characters but 
it is usually easier to compress. The BWT consists 
of three basic steps (see Fig. 1): (1) append to the 
end of T a special character # smaller than any other 
text character; (2) form a conceptual matrix .h4 whose 
rows are the cyclic shifts of the string T #  sorted 
in lexicographic order; (3) construct the transformed 
text L by taking the last column of .h4. Notice that  
every column of .h4, hence also the transformed text 
L, is a permutation of T # .  In particular the first 
column of .h4, call it F ,  is obtained by lexicographically 
sorting the characters of T #  (or, equally, the characters 
of L). The transformed string L usually contains 
long runs of identical symbols and therefore can be 
efficiently compressed using move-to-front coding [3], in 
combination with statistical coders (see for example [5, 
9]). 

Note that  when we sort the rows of .A4 we are 
essentially sorting the suffixes of T. Hence, there is 
a strong relation between the matrix A4 and the suffix 
array of T. This relationship is a central concept in the 
design of the FM-index. The matrix .h4 has also other 
remarkable properties; to illustrate them we introduce 
the following notation: 

• for c 6 ~ let C[c] denote the total number of occur- 
rences in T of the characters which are alphabeti- 
cally smaller than c. 

• for c 6 ~ let Occ(c, k) denote the number of occur- 
rences of c in the prefix L[1, k] of the transformed 
text L. 

As an example, in Fig. 1 we have C[s] : 8 and 
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Occ(s, 10) = 4. The following properties of .M have 
been proven in [5]: 

a. Given the i th row of M ,  its last character L[i] 
precedes its first character F[i] in the original 
text  T. 

b.  Let LF(i )  = C[L[i]] + Occ(L[i], i). The character in 
the first column F corresponding to L[i] is located 
in position LF(i) .  For example, in Fig. 1 we 
have LF(10)  = C[s] + Occ(s, 10) = 12. Indeed, 
both  L[10] and F[12] correspond to the first s 
in m i s s i s s i p p i .  We call LF(.)  the LF-mapping 
(Last-to-First column mapping).  

c. If  T[k] is the i th character of L then T[k - 1] = 
L[LF(i)]. For example, in Fig. 1 T[3] is the 
10th character of L and we correctly have T[2] = 
L[LF(IO)] = L[12] = i. 

The FM-index consists of a compressed represen- 
tation of the transformed string L together with some 
auxiliary information. We point out that  from the com- 
pressed representation of L, it is possible to get back 
the original text T by exploiting repeatedly Proper ty  c. 
In the next section we describe a practical implementa- 
tion of the FM-index. To help the reader in following 
the description we now give a high level overview of the 
two basic search procedures supported by the FM-index: 
count and locate. 

Procedure count takes as an input a pat tern  P[1,p] 
and returns the number of occurrences of P in T. count 
exploits two nice structural  properties of the matr ix  
.M: (i) all the suffixes of the text T[1,u] prefixed by 
a pat tern  P[1,p] occupy a contiguous set of rows of 
M; (ii) this set of rows has starting position sp and 
ending position ep, where sp is the iexicographic position 
of the string P among the ordered rows of .A4. count 
determines the positions sp and ep via p phases, each 
one preserving the following invariant: At the i-th phase, 
the parameter sp points to the first row of M prefixed 
by P[i,p] and the parameter ep points to the last row of 
.A4 prefixed by P[i,p] (see the pseudo-code in Fig. 2). 
After the final phase, sp and ep will delimit the portion 
of .M containing all the text suffixes prefixed by P.  The 
integer (ep - sp + 1) will therefore account for the total  
number of occurrences of P in T. For example, in Fig. 1 
for the pat tern P = s± we have sp = 9 and ep = 10 
for a total of two occurrences. In [10] it is shown how 
to compute Occ(c,k) in constant time, so computing 
count( P[1, p]) takes O(p) t ime in the worst case. 

Procedure locate takes as an input the index i 
of a row of the matr ix  .h4 and returns the start ing 
position in T of the suffix corresponding to .hi[i] (in 
the following we write pos(i) to denote such a position). 

A l g o r i t h m  count( P[1, p]) 

1. i = p, c = P[p], sp = C[c] + 1, ep = C[c + 1]; 

2. wh i l e  ((sp _< ep) a n d  (i _> 2)) do  

3. c = P [ i -  1]; 

4. sp = C[c] + Occ(c, sp - 1) + 1; 

5. ep = C[c] + Occ(c, ep); 

6. i = i - 1 ;  

7. i f  (ep < sp) th en  return "not found" else return 
"found ( e p -  sp + 1) occurrences". 

Figure 2: Algorithm count for computing the number of 
occurrences of P[1,p] in T[1, u]. 

For example in Fig. 1 we have pos(3) = 8 since .M[3] = 
i p p i # m i s s i s s  and T[8, 11] = i pp i .  

If  one wants to compute the positions of all occur- 
rences of a pa t tern  P[1,p] it suffices to call locate(i) for 
i = s p , . . . , e p  where sp, ep are the row indexes com- 
puted by count. The basic idea described in [10] for 
computing locate(i) is the following. We logically mark 
a suitable subset of the rows of At. For these marked 
rows we keep explicitly their positions in T. Therefore, 
if i is a marked row pos(i) is directly available. If i is 
not marked, the procedure locate uses the LF-mapping 
and Proper ty  e above to find the row il corresponding 
to the suffix T[pos(i) - 1, u]. This procedure is i terated 
v times until we reach a marked row iv for which pos(iv) 
is available; then we set pos(i) = pos(iv) + v. Because 
of Proper ty  b each LF-mapping computat ion requires a 
call to the Occ procedure and a table lookup. Hence an 
effective implementation of Occ and a proper marking 
strategy are the key ingredients for a fast locate. In [10] 
two different marking strategies are described. The first 
one is simpler and yields a O(log 2 u) t ime implementa- 
tion for locate. The second strategy is more complex 
but significantly faster: it yields a O(log e u) t ime imple- 
mentat ion for locate for any fixed e > 0. 

3 A n  imp lemen ta t io n  of  the  F M - i n d e x  

In this section we describe an implementation of the 
FM-index. Our implementat ion is based on ideas in- 
troduced in [10], but in some points we use techniques 
which work well in practice rather  than more cum- 
bersome techniques with guaranteed good asymptot ic  
worst case behavior. The implementation described 
here will be extensively tested in Section 4. 

We have seen in the previous section that  for 
an efficient implementation of the count and locate 
procedures it is important  to be able to efficiently 
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compute the value Occ(c,k), that  is, to count the 
number of occurrences of the character c in the prefix 
L[1, k]. To this end, we parti t ion the string L into 
superbuckets of size ~sb. Each superbucket is in turn 
parti t ioned into buckets of size lb (clearly gb divides 
~sb). For each superbucket we store a table containing 
for each character c E E the number of its occurrences 
since the beginning of the string L. In other words, for 
the superbucket Si we store the number of occurrences 
of c in S 1 , S 2 , . . . , S i - 1 .  Similarly, for each bucket 
we store the number of occurrences of every character 
since the beginning of its superbucket. Using this 
auxiliary information we can easily compute the number 
of occurrences of any given character from the beginning 
of L up to the beginning of a bucket. In order to 
efficiently compute the number of occurrences inside a 
bucket, instead of compressing the string L as a single 
unit, we compress each bucket separately. 

Summing up, the overall structure of the FM-index 
is the following: 

• The superbuckets section which contains for each 
superbucket the number of occurrences of every 
character in the previous superbuckets. 

• The bucket directory which contains the start ing 
position of each compressed bucket in the body of 
the FM-index. 

• The body of the FM-index which contains the 
compressed image of each bucket. The compressed 
image of each bucket includes an header containing 
the number of occurrences of each character since 
the beginning of the superbucket. 

Given the above structure, in order to compute 
Occ(c,k) we first locate (using the bucket directory) 
the s tar t ing position of the bucket Bi containing L[k]. 
Then, we decompress Bi and count the number of 
occurrences of c from the beginning of the bucket up 
to L[k]. Then, from the bucket header we get the 
number of occurrences of c since the beginning of the 
superbucket. Finally, from the superbucket section we 
get the number of occurrences of c since the beginning 
of L. 

In the above description we did not mention the 
actual size of buckets and superbuckets, neither the 
algorithm used to compress the single buckets. In [10] 
these parameters  have been set to achieve effective 
worst case bounds. Here the choice has been made 
on an experimental  basis and is therefore discussed in 
Section 4. 

We have already observed that  the string L is 
usually locally homogeneous, tha t  is, if we look at 
a small portion of it we will likely see only a few 
distinct characters. We have taken advantage of this 

property as follows. For each (super)bucket we store a 
b i tmap of the characters occurring in it. These bi tmaps 
make it possible to quickly detect if a given character 
occurs in a certain (super)bucket thus possibly speeding 
up the computat ion of Occ(c,k). Additionally, these 
bi tmaps allow to reduce the cost of storing the auxiliary 
information described above; for example the header of 
a bucket is restricted to the characters occurring in its 
superbucket. 

The final point to be discussed is how we select 
and mark  a subset of the rows of .A.4 as required by 
the procedure locate. Our first design decision on this 
issue has been to let the user choose the fraction f of 
the rows to be marked. Our second decision has been to 
use a marking s t rategy different from the one described 
in [10]. Since we are mainly interested in indexing text 
collections, we decided to take advantage of the fact 
that  the occurrences of each character in these texts are 
roughly equally spaced. Therefore, when we construct 
the index we select one single character, say c, which 
occurs with frequency close to f .  Then, all the rows 
in .A4 whose last character is c are logically marked 
and the start ing positions in T of their corresponding 
suffixes are stored in an array P in the order they occur 
in .A4. In particular if row j ends with c, then the 
position pos(j)  of the corresponding suffix will be stored 
in the entry Occ(c, j )  of "P. At search time the Jocate 
procedure computes pos(i) as follows. If L[i] = c then 
pos(i) = P[Occ(c,i)]. Otherwise (i.e. if L[i] ~ c) the 
Jocate procedure iterates the LF-mapping v times until 
it reaches a row iv whose last character is c (i.e. Lily] = 
c). Then locate returns pos(i) = P[Occ(c, iv)] + v. 

I t  goes without saying tha t  this marking strategy 
heavily relies on the s t ructure  of the text  and does 
not ensure good performances in the worst case, as in- 
stead guaranteed by the theoretical approach of [10]. 
Nonetheless the simplicity of this marking strategy, its 
reduced space overhead, and the expected regular struc- 
ture of the indexed texts, drive us to think favorably of 
thi's scheme; its actual performance will be investigated 
and commented in the next section. 

4 E x p e r i m e n t i n g  the  F M - i n d e x  

The implementat ion of the FM-index described in the 
previous section contains several parameters:  the size 
of buckets and superbuckets,  the algorithm used for the 
compression of the buckets, the frequency of the marked 
characters, etc.. In this section we describe the results 
of an extensive set of experiments  aimed at investigating 
the role played by each one of these parameters .  We also 
compare the performance of the FM-index with those 
of other compressors and of the suffix array. We ran all 
the experiments on a machine equipped with a 600Mhz 
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Pentium III processor with 512Kb L2 cache, 1 Gb RAM, 
and a 9.1 Gb SCSI hard disk. The operating system was 
Gnu/Linux Debian 2.2. 

We point out that  searching in the FM-index re- 
quires at run time a very small amount of internal mem- 
ory. In fact, we access one bucket at a time (via the 
f s e e k / f r e a d  procedures) and therefore we need a con- 
stant amount of internal memory independent of the 
size of the indexed text. 

Table 1 reports the files used in our experiments. 
We also made use of truncated versions of the file apgO: 
we write ap90-N to denote the file consisting of the first 
N Megabytes of apgO. 

C o m p r e s s i o n  o f  bucke t s .  We have tested four dif- 
ferent algorithms for the compression of single buck- 
ets. From the simplest to the most complex they are: 
Unary coding (see [9, Sect. 7.1]), Hierarchical 3-level 
coding (see [9, Sect. 7.2]), Arithmetic coding [25], and 
Huffman coding with multiple tables (following the im- 
plementation of [22]). After a few preliminary tests we 
discarded Unary coding and Arithmetic coding which 
turned out to be slower and less efficient in compression 
than, respectively, Hierarchical coding and Multiple Ta- 
bles Huffman coding (MTH coding from now on). For 
this reason in the following we report  the results only 
for Hierarchical coding, which is the fastest algorithm, 
and MTH coding, which compresses better. 

Size o f  s u p e r b u c k e t s .  It should be clear from the de- 
scription in Section 3 that  the purpose of superbuckets 
is to reduce the amount of auxiliary information stored 
in each bucket (in each bucket we store, for each char- 
acter, its number of occurrences from the beginning of 
the superbucket, rather than from the beginning of the 
file). Since each superbucket introduces some overhead 
of its own, in our first test we have tried to determine 
which is the optimal ratio between the size of buckets 
and superbuckets. Table 2 reports the results of our ex- 
periments. We see that  this ratio does not significantly 
influence the average time of count and locate opera- 
tions. We also see that  very large or very small ratios 
yield a poor overall compression. However, there is a 
large range of ratios which yield a compression close to 
33% (that is, the size of the FM-index is roughly one 
third of the original text size). In view of these results, 
in the rest of our experiments we will choose the sizes 
of buckets and superbuckets so that  their ratio is 1:16. 

Size o f  bucke t s .  Intuitively, the finer is the bucket de- 
composition, the faster is the decompression of a single 
bucket and the worse should be the overall compres- 
sion because of the larger auxiliary information kept 
at bucket level. Since the count and locate operations 
need to decompress several buckets (one bucket is de- 

compressed at each call of the subroutine Occ, see Sec- 
tion 3), we would like to set the bucket size as small 
as possible; on the other side, in order to improve the 
compression ratio we would like to increase the bucket 
size to reduce the number of buckets and hence min- 
imize the overall auxiliary information kept for them. 
Table 3 shows that  there is a trade-off between com- 
pression ratio and search speed so that  the choice of the 
appropriate bucket size clearly depends on the resource 
the end-user wishes to minimize. 

From the results in Table 3 we see that  for a fixed 
bucket  size Hierarchical coding induces smaller average 
times for count and locate operations, whereas MTH 
coding compresses better. However, for a fair compar- 
ison it is natural to ask which is the fastest algorithm 
when the resulting FM-index requires a similar space 
occupancy. In this setting the MTH coding strategy ap- 
pears to be superior. In fact the FM-index based upon 
Hierarchical coding needs to use buckets of size 8Kb in 
order to achieve a compression similar to the one ob- 
tained by the index based upon MTH coding with 1Kb 
buckets. But MTH coding with 1Kb buckets is faster in 
both the count and locate operations (in both cases by 
a factor roughly 2.5). In other words, the space saved 
by MTH coding in the compression of the single buck- 
ets makes it possible to use smaller buckets (i.e. to 
increase the amount of auxiliary information), and this 
more than compensate the slower decompression speed 
of MTH coding. The net result is thus a faster search- 
ing algorithm. For this reason in the following we focus 
only on the FM-index built using MTH coding. 

Percentage  o f  m a r k e d  c h a r a c t e r s .  This parameter 
clearly introduces a trade-off between compression and 
searching speed: the larger is the number of marked 
characters, the bigger is the space required for storing 
their positions, the smaller is the number of LF-steps 
required for a locate operation. Of course count is not 
affected by the value assigned to this parameter since it 
does not use marked characters. 

Table 4 reports the performance of the FM-index 
built using MTH coding and different bucket sizes and 
percentages of marked characters. Although we do not 
have sufficient data  to draw a general rule, our results 
suggest that  it is preferable to use small buckets. For 
example, the index built upon 1Kb buckets and 2% 
marked characters is more compact and supports faster 
searches than the index with 8Kb buckets and 5% of 
marked characters. 

R o b u s t n e s s  of  the F M - i n d e x .  Our next set of 
experiments are designed to test the performances of 
the FM-index on different types of input files. We 
have built the FM-index for all files in Table 1 using 
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Name Size Content Name Size Content 
bible  4,047,392 King James Bible cantrbry 2,821,120 Canterbury corpus 
e.coli i 4,638,690 DNA sequence apgO 67,108,864 SGML-tagged text 

.. world192 ! 2,473,400 1992 CIA world fact book . jdkl3 69,872,170 i html and java sources 

Table 1: Files used in our experiments. The files bible, e.coli, world192 are from the Canterbury Corpus [2]. The 
file cantrbry is a tar archive containing the small files of the Canterbury Corpus. It includes both binary files 
and text files in various formats (plain text, html, c, and lisp code). The file ap90 consists of the first 64Mb 
of the concatenation of the files ap9OMMDD.txt from the TREC collection [13]. The file jdk13 consists of the 
concatenation of the . j ava  and .html files from the Java Jdk 1.3 documentation. 

Superbucket size 2Kb 4Kb 8Kb 16Kb 32Kb 64Kb 128K 256Kb 512Kb 1024Kb 4096Kb 
Compression ratio 41.04 35.45 33 .05  32.28 32.34 32.89 33.64 34.68 36.06 37.47 41.16 
Ave. count time 1.3 0.9 1.2 1.1 1.1 1.4 1.0 1.0 1.0 1.4 1.2 
Ave. locate time 8.6 8.7 8.7 8.7 8.8 8.8 8.9 9.0 8.9 ! 8.7 7.5 

Table 2: Compression ratio (percentage), and average time (milliseconds) for the count and locate operations as 
a function of the superbucket size. The FM-index was built for the file bible using MTH coding, marking 2% of 
the input characters and adopting buckets of 1Kb. In each test, we searched 100 randomly chosen English words 
of length between 4 and 8, for a total of 100 count operations and 1,614 locate operations. We have repeated the 
same set of experiments using the file ap90-8 obtaining a similar behavior. 

MTH coding bible ap90-8 
Bucket size 1Kb 2Kb 4Kb 8Kb 1Kb 2Kb 4Kb 8Kb 
Compression ratio 32.28 29 .35  27.63 26.57 38.67 34.77 32 .44  30.98 
Ave. count time 1.0 1.6 2.5 4.1 1.7 2.4 3.5 6.1 
Ave. locate time 7.5 10.8 17.2 29.6 5.4 7.7 12.0 20.5 

Hierarchical coding bible " ap90-8  

Bucket size 1Kb 2Kb i 4Kb 8Kb 1Kb 2Kb I 4Kb 8Kb 
Compression ratio 40.08 37.64 I 36.27 35.49 48.00 44.71 ! 42.84 41.79 
Ave. count time 0.9 1.1 i 1.5 2.5 1.2 1.7! 2.3 4.1 
Ave. locate time 5.8 7.9 I 12.3 20.7 4.3 5.8 i 8.8 14.8 

Table 3: Compression ratio (percentage) and average time (milliseconds) for the count and locate operations as a 
function of the bucket size. The first table refers to the FM-index built using MTH coding, the second one refers 
to Hierarchical coding. Each test consisted in searching 1,000 randomly chosen English words of length between 
4 and 8. The total number of locate operations in each test was 24,434 for bible and 55,501 for ap90-8. In all tests 
the FM-index was built marking 2% of the input characters. 

bible 
Bucket size 1Kb 2Kb 4Kb 

1% Compression ratio 29.54 26.61 24.89 
Ave. locate time 15.0 21.7 34.7 

2% Compression ratio 32.28 29 .35  27.63 
Ave. locate time 7.5 10.8 17.2 

5% Compression ratio 40 .25  37 .32  35.60 
Ave. locate time 2.9 4.1 6.6 

10% Compression ratio 53.70 50 .77  49.06 
Ave. locate time 1.3 1.9 3.0 

8Kb 
23.89 

59.5 
26.57 

29.6 
34.54 

11.3 
47.99 

5.1 

ap90-8 
1Kb 2Kb 4Kb 8Kb 

35.71 31 .81  29.48 28.02 
15.6 22.1 34.7 58.8 

38.67 34.77 32.44 30.98 
5.4 7.7 12.0 20.5 

46.67 42.77 40.43 38.98 
3.6 5.1 8.0 13.7 

58.25 54 .35  52.02 50.56 
1.9 2.7 4.3 7.3 

Table 4: Compression ratio (percentage) and average time (milliseconds) for a locate operation as a function of 
bucket size and percentage of marked characters. Each test consisted in searching 1,000 randomly chosen English 
words of length between 4 and 8. The total number of locate operations in each test was 24,434 for bible and 
55,501 for apgO-8. In all test the FM-index was built using MTH coding. The percentage of marked characters 
is given in the first column. 
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MTH coding, setting the bucket size to 1Kb, and 
marking 2% of the input characters. We emphasize that  
these were arbitrary choices (even if reasonable ones) 
since our previous experiments show that ,  depending 
on the application, other parameters could be more 
appropriate. 

Table 5 summarizes the results of our tests. The 
first point to be noted is that  the data for the files 
ap90-N show that  the searching time is not significantly 
influenced by the size of the input file. In addition, 
for most of the files the average count and locate time 
have similar values, the only exception being the average 
Jocate time in jdk13. We believe that the reason for 
this exception resides in the simple marking technique 
described in Section 3 which does not work well for 
this file. The assumption that  the occurrences of a 
given character are evenly distributed in the input file 
is probably not valid for jdk13 which consists of .html 
and . j a va  files. 

F M - i n d e x  vs g z i p / b z i p .  We have compared the 
compression ratio and the (de)compression speed of 
the FM-index with those of gzip (the standard Unix 
compressor) and bzip2 (the best known compressor 
based on the BWT, see [22]). We have considered 
two versions of the FM-index: a "fat" index with 1Kb 
buckets and 2~0 marked characters (its performance is 
the one reported in Table 5) and a "tiny" index with 
8Kb buckets and no marked characters (the tiny index 
supports only the count operation which takes about 6 
milliseconds on average). 

From the results in Table 6 we see that  the tiny 
FM-index takes significantly less space than the cor- 
responding gzip compressed file. In addition, for all 
files except bible and cantrbry, the tiny FM-index com- 
presses better than bzip2. This may appear surprising 
since bzip2 is also based on the BWT and MTH cod- 
ing. The explanation is that  the FM-index computes 
the B W T for the entire file whereas bzip2 splits the in- 
put in 900Kb blocks. This compression improvement is 
payed in terms of speed; the FM-index is slightly slower 
than bzip2 in both compression and decompression, the 
difference being more noticeable for larger files. 

We have already observed that  the FM-index in- 
cludes the compressed text as well as some auxiliary 
information for supporting the count and locate oper- 
ations. The comparison of the "tiny" FM-index with 
bzip2 shows that  the auxiliary information used by count 
is negligible for proper bucket sizes. On the other side, 
the "fat" FM-index performs slightly worse than gzip 
but supports both count and locate. 

T h e  F M - i n d e x  as a c o m p r e s s e d  d i c t i o n a r y .  We 
now investigate the behavior of the FM-index in 

Dictionary-based applications. This setting is interest- 
ing because it allows to exploit the best algorithmic 
feature of the FM-index, namely the effective count op- 
eration. Here the number of retrieved occurrences is 
usually small, and possibly one single word must be re- 
trieved. Examples of applications are spell checkers, 
virus detectors and personal file-systems search tools. 

The literature about space-efficient implementa- 
tions of tries is huge. Classical list-based or array-based 
implementations of tries are unacceptable because they 
require too much space [14]. Hash-based implementa- 
tions although elegant and compact, do not have guar- 
anteed performance in time and space occupancy (see 
e.g. [7]). Succinct representations of tries supporting 
fast search operations in the worst case have been re- 
cently introduced in the theoretical setting (see [20] for a 
survey). However, their space occupancy is still linear in 
the input text length and their actual performance have 
been not yet experimented. Consequently, the main ref- 
erence for whom is interested in storing a dictionary of 
arbitrary strings and perform fast (prefix-)word searches 
is the ternary search tree (TST) [4]. We therefore com- 
pared our FM-index against TST on two dictionaries: 
us.dic and ap90.dic of size about 1Mb and 11Mb, re- 
spectively. Unlike all the other experiments, for a fair 
comparison we ran here an internal-memory version of 
the FM-index. Table 7 shows that  TS T  is faster by 
a factor in the range [180, 233] than the FM-index in 
checking the presence of a (prefix-)word. However, the 
space occupied by TST is about 15 times larger than 
the space required by the FM-index. 

T h e  F M - i n d e x  as a fu l l - t ex t  i n d e x i n g  too l .  We 
compare the FM-index against four known search- 
ing/indexing tools: grep, zgrep (i.e. grep over gzipped 
files), bgrep (i.e. grep over bzipped files) and the suffix 
array. The first three tools are scan-based algorithms 
which fully scan the compressed or uncompressed text. 
Clearly the space occupancy depends on the adopted 
compression scheme (if any), and unlike the FM-index, 
the time for listing all pattern occurrences is not in- 
fluenced by their number but grows linearly with the 
length of the searched text.  Therefore a direct compari- 
son between the FM-index and these scan-based tools is 
unfair. Nonetheless from Table 8 we may estimate the 
maximum number of occurrences that can be retrieved 
through the FM-index faster than a full-text scan ap- 
proach. This number is highly variable and depends on 
the text structure and length. For example, on ap90- 
8 in the time taken by zgrep the FM-index can locate 
roughly 130 pattern occurrences. 

A comment is in order at this point. An attentive 
reader may find surprisingly high the time gap between 
zgrep/bgrep and grep. We investigated this phenomenon 
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File ' bible e.coli world i cantrbry jdk13 apgO-8 ap90-16 ap90-321 ap90 
[=M Compr. ratio 32.28 33 .61  33.23 46.10 2 1 . 4 1  38.67 37.43 36.36 : 35.49 
index Ave. count time 1.0 2.3 1.5 2.7 2.6 1.7 1.7 1.7 1.6 

Ave. locate time 7.5 7.6 9.4 7.1 32.8 [ 5.4 , 5.3 5.5 5.3 

Table 5: Compression ratio (percentage) and average search time (milliseconds) for the FM-index on different 
types of input files. Each test consisted in searching 1,000 randomly chosen English words of length between 4 
and 8 (for e.coli we used random DNA sequences of length between 8 and 15). In all tests the FM-index was built 
using 1Kb buckets compressed with MTH coding and marking 2% of the input characters. 

File 
[=M-index Compression ratio 
(tiny) Construction time 

Decompression time 
[=M-index Compression ratio 
(fat) Construction time 

Decompression time 
bz ip2  Compression ratio 

Compression time 
Decompression time 

gzip Compression ratio 
Compression time 
Decompression time 

bible e.coli world cantrbry jdk13 ap90-8 ap90-16 ap90-32 ap90 
21.09 26.92 19.62 24.02 6.94 25.06 23.93 22.96 22.14 
2.24 2.19 2.26 2.21 3.48 2.49 2.64 2 .81 3.04 
0.45 0.49 0.44 0.38 0.42 ' 0.48 0.50 0.52 0.57 

! 

32.28 33.61 33.23 46.10 21 .41  38.67 37.43 36.36 35.49 
2.28 2.17 2.33 2.39 3.51 2.59 2.74 2.88 3.10 
0.46 0.51 0.46 0.41 0.44 0.51 0.52 0.55 0.59 

20.90 26.97 19.79 20.24 7.23 27.38 , 27.33 27.32 27.36 
1.16 1.28 1.17 0.89 1.52 1.16 i 1.17 1.16 1.16 
0.39 0.48 0.39 0.31 0.28 0.43 ' 0.43 0.43 0.43 

29.07 28.00 29.17 26.10 10 .97  37.21 37.28 37.31 37.35 
1.74 10.48 0.87 5.04 0.39 0.96 0.97 0.97 0.97 
0.07 0.07 0.06 0.06 0.04 0.07 0.07 0.07 0.07 

Table 6: Compression ratio (percentage) and (de)compression speed (microseconds per input byte) of the FM- 
index compared with those of gzip (with option -9 for maximum compression) and bzip2 (version 1.0.1). The 
"fat" FM-index uses 1Kb buckets and 2% marked characters, whereas the "tiny" FM-index uses 8Kb buckets and 
no marked characters. 

' Dictionary us. dic ap90. dic Dictionary us. dic ap90. dic 
TST Compression ratio 569.72 615.50 FM-index [ Compression ratio 41.47 39.64 

Ave. search time 0.005 0.006 I Ave. search time 0.9 1.4 

Table 7: Compression ratio (percentage) and average search time (milliseconds) for Ternary Search Trees and 
FM-index (built using MTH coding, 1Kb buckets, and no marked characters). The dictionary us.dic contains 
118,619 words and comes from the winedt distribution (ftp.dante.de/tex-archive/systems/win32/winedt/dict/us.zip). 
The dictionary apgO.dic contains 890,026 words extracted from the ap90 file. Each test consisted in building the 
FM-index (or TST) for the dictionary and in searching 10,000 randomly chosen English words of length between 

4 and 8. 

File bible e.coli world cantbry jdk13 
FM Compr. ratio 32.28 33.61 33.23 46.10 21.41 
index Ave. count time 1.0 2.3 1.5 2.7 2.6 

Ave. locate time 7.5 7.6 9.4 7.1 32.8 
Compr. ratio 29.07 28.00 2 9 . 1 7  26.10 10.97 

zgrep Ave. search time 343.8 33,642.6 2 1 3 . 4  516.9 3,869.6 
Compr. ratio 20.90 26.97 1 9 . 7 9  20.24 7.23 

bgrep Ave. search time 1,619.3 39,644.4 1,012.4 1,189.6 19,944.9 
Compr. ratio 100.00 100 .00  100.00 100.00 100.00 

grep Ave. search time 40.9 96.8 26.0 32.3 617.3 
suffix Compr. ratio 375.00 387.50 375.00 375.00 437.50 
array Ave. search time 0.5 0.6 0.5 0.5 1.0 

ap90-8 ~ ap90-16 
38.67 37.43 

1.7 1.7 
5.4 5.3 

37.21 37.28 
744.1 1,468.8 
27.38 27.33 

3,693.1 7,381.7 
100.00 100.00 

79.3 154.5 
400.00 412.50 

0.7 0.8 

ap90-32 ap90 
36.36 35.49 

1 .7  1.6 
5 .5  5.3 

37.31! 37.35 
2,939.0 5,854.7 

27.32 27.36 
14,718.0 29,480.8 

100.00 100.00 
302.4 597.2 

425.00 437.50 
1.1 1.6 

Table 8: Compression ratio (percentage) and average search time (milliseconds) of the FM-index compared with 
other searching/indexing tools. Each test consisted in searching 1,000 randomly chosen English words of length 
between 4 and 8 (for e.coli we used random DNA sequences of length between 8 and 15). The FM-index was 
built using 1Kb buckets compressed with MTH coding and marking 2% of the input characters. The search time 
for zgrep, bgrep and grep refers to the overall cost of the scanning of the input file (compressed or uncompressed). 
The search time for the suffix array accounts for the cost of retrieving all pattern occurrences. 
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and found that  such a gap cannot be justified by the 
additional uncompression step, but it is associated with 
the use of the Unix pipe (i.e. the command I) in zgrep 
and bgrep. 

Table 8 also shows tha t  the suffix array is incredibly 
fast in supporting the locate operation (the position of 
an occurrence is directly available), but require a large 
space occupancy, a factor in the range [8, 13] more than 
the FM-index. 

5 Concluding remarks 

As a future research we plan to investigate and im- 
plement new marking strategies which are simple and 
whose performance do not degenerate with biased dis- 
tributions of the characters in the indexed text. This 
would make the locate procedure less sensitive to the 
text structure. Another interesting issue is the exten- 
sion of the search procedure to more complex queries, 
like approximate matches and regular expression search- 
ing. We believe that  the structural properties of the 
FM-index may allow to easily adapt  the algorithms 
known for the suffix array [11]. Finally, we are cur- 
rently implementing a text retrieval system based on 
the combination of Glimpse [17] and the FM-index by 
following the ideas detailed in [10]. 
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