
An experimental study of an opportunistic index

P a o l o F e r r a g i n a * G i o v a n n i M a n z i n i t

A b s t r a c t
The size of electronic data is currently growing at a faster
rate than computer memory and disk storage capacities.
For this reason compression appears always as an attractive
choice, if not mandatory. However space overhead is not the
only resource to be optimized when managing large data
collections; in fact data turn out to be useful only when
properly indexed to support search operations that efficiently
extract the user-requested information.

Approaches to combine compression and indexing tech-
niques are nowadays receiving more and more attention. A
first step towards the design of a compressed full-text index
achieving guaranteed performance in the worst case has been
recently done in [10]. This index combines the compression
algorithm proposed by Burrows. and Wheeler [5] with the
suffix array data structure [16]. The index is opportunistic
in that it takes advantage of the compressibility of the in-
put data by decreasing the space occupancy at no significant
asymptotic slowdown in the query performance.

In this paper we present an implementation of this index
and perform an extensive set of experiments on various
text collections. The experiments show that our index is
compact (its space occupancy is close to the one achieved
by the best known compressors), it is fast in counting
the number of pattern occurrences, and the cost of their
retrieval is reasonable when they are few (i.e., in case of a
selective query). In addition, our experiments show that
the FM-index is flexible in that it is possible to trade
space occupancy for search time by choosing the amount
of auxiliary information stored into it.

1 I n t r o d u c t i o n

The study, the design and the experimentation of meth-
ods for searching and updating text collections have at-
t racted the attention of the algorithmic and data struc-
tural community during the last five decades. Pre-
cious ideas have been presented in the main l i te ra ture- -
inverted lists, Patricia trees, tries, ternary search trees,
suffix trees, suffix arrays, just to cite a few--and they
constitute the heart of several software tools currently
used for processing textual data. The research in this
area has been recently re-vitalized by new interesting
applications as digital libraries, office automation sys-
tems, SGML/XML tagged text collections, document

- - ~ a r t i m e n t o di Informatica, Universith di Pisa, Italy. E-
mail: ferragin©di.unipi.it. Supported in part by Italian
MURST project "Algorithms for Large Data Sets: Science and
Engineering" and by UNESCO grant UVO-ROSTE 875.631.9.

?Dipartimento di Scienze e Tecnologie Avanzate, Universit~
del Piemonte Orientale, Alessandria, Italy and IMC-CNR, Pisa,
Italy. E-mail: manzini©mfn.unipm.it. Supported in part by
MURST 60% funds.

and genome databases, web search engines, etc.. In
most cases the text collections are so large that scan-
based (i.e. grep-like) approaches are not appropriate,
and d a t a structures supporting effective and powerful
search operations become mandatory.

The main idea underlying data structures for text
searching is to build an index tha t allows to focus the
search for a given pat tern only on a small portion of
the input text. The improvement in the query perfor-
mance is paid by the additional space necessary to store
the index. Most of the research in this field has been
therefore directed to design da ta structures which offer
a good trade-off between query and update t ime ver-
sus space usage. In this context compression appears
always as an at tract ive choice, especially in the light of
the significant increase in CPU speed that makes more
economical to store da ta in compressed form than un-
compressed. It goes without saying that compression
may also introduce some improvements which are sur-
prisingly not confined to the space occupancy: "space
optimization is closely related to time optimization in a
disk memory" [14].

Start ing from these promising considerations, many
researchers have recently tried to combine text compres-
sion with indexing techniques and searching algorithms.
They have mainly investigated the compressed match-
ing problem for various compression schemes: for ex-
ample LZ77 [8], LZ78 [1], Huffman [19], Antidictionar-
ies [6, 23]. Although these algorithms result asymptoti-
cally faster than the classical scan-based methods, their
overall t ime requirement may be yet too high since they
rely on a full scan of the compressed text.

Some authors have tried to plug classical indexing
tools--l ike inverted lists [24] or suffix arrays [18]--upon
compressed texts and achieved experimental trade-offs
between space occupancy and query performance (see
e.g. Glimpse [17]). Other authors [12, 15, 21] have
instead proposed techniques to represent succinctly the
index itself and still support effective search operations;
however, the space occupancy of their da ta structures
grows linearly with the size of the indexed text.

The first step towards the design of a compressed
index ensuring effective search performance in the worst
case has been recently pursued in [10]. The novelty of
the approach in [10] resides in the careful combination

269

of the Burrows-Wheeler compression algorithm [5] with
the suffix array data structure [16] to obtain a sort of
compressed sul~ix array (see Section 2). The resulting
index is opportunistic in that, although no assumption
on a particular fixed distribution is made, it takes
advantage of the compressibility of the input data
by decreasing the space occupancy at no significant
asymptotic slowdown in the query performance. More
precisely in [10] it is proven that the space required to
index a text T is O(Hk(T))+o(1) bits per text character,
where Hk(T) is the k-th order empirical entropy of T
(the bound holds for any fixed k > 0). We point out
that this index also includes the compressed text. The
index allows to count the number of occurrences of an
arbitrary pattern P[1,p] in O(p) time, and list them
in O(log ~ u) time per occurrence, where e > 0 is an
arbitrarily fixed constant. Since this is a Full-text index
and occupies Minute space, in the following it will be
shortly called FM-index.

Notice that there exists in the literature another
family of indices, called word-based indices, which in-
cludes for example inverted lists and signature files [24].
Although much compact in space, these indices sup-
port only word-based queries so that their effective ap-
plication is limited to linguistic texts. Full-text indices
are therefore more flexible. For example, they allow to
search for arbitrary substrings in text collections--like
DNA sequences or oriental languages--where word de-
limiters are not so clear.

Given the appealing asymptotical performance and
structural properties of the FM-index, it is interesting
to investigate its behavior in an experimental setting. In
this paper we describe an implementation of this index
and perform an extensive set of experiments on vari-
ous kinds of texts: plain text, DNA sequence, SGML-
tagged file, .html and . j a v a source. We have also
compared the FM-index against three kinds of search-
ing/indexing tools: ternary search trees [4], compressed
string-matching algorithms (zgrep-like), and suffix array
data structure [16]. These experiments show that the
FM-index is compact (its space occupancy is close to
the one achieved by the best known compressors), it is
fast in counting the number of pattern occurrences, and
the cost of their retrieval is reasonable when they are
few (i.e. in case of a selective query). In addition, our
experiments show that the FM-index is flexible in that
it is possible to trade space occupancy for search time
by choosing the amount of auxiliary information stored
into it.

2 Background

Let T[1,u] denote a text over the alphabet ~. The
Burrows-Wheeler compression algorithm is based on a

F L

mississippi# # mississippi
ississippi#m i #mississip p
ssissippi#mi i ppi#missis s
sissippi~mis i ssippi#mis s
issippi#miss i ssissippi# m
ssippi#missi ~ mississippi #
sippi#missis p i#mississi p
ippi#mississ p pi#mississ i
ppi#mississi s ippi#missi s
pi#mississip s issippi#mi s
i#mississipp s sippi#miss i
#mississippi s sissippi#m i

Figure 1: Example of Burrows-Wheeler transform for
the string T = m i s s i s s i p p i . The matrix on the right
has the rows sorted in lexicographic order. The output
of the BW T is column L; in this example the string
ipssm#pissii.

reversible transformation, called BW-Transform (BWT
from now on) which transforms the input text T into
a new string which contains the same characters but
it is usually easier to compress. The BWT consists
of three basic steps (see Fig. 1): (1) append to the
end of T a special character # smaller than any other
text character; (2) form a conceptual matrix .h4 whose
rows are the cyclic shifts of the string T # sorted
in lexicographic order; (3) construct the transformed
text L by taking the last column of .h4. Notice that
every column of .h4, hence also the transformed text
L, is a permutation of T # . In particular the first
column of .h4, call it F , is obtained by lexicographically
sorting the characters of T # (or, equally, the characters
of L). The transformed string L usually contains
long runs of identical symbols and therefore can be
efficiently compressed using move-to-front coding [3], in
combination with statistical coders (see for example [5,
9]).

Note that when we sort the rows of .A4 we are
essentially sorting the suffixes of T. Hence, there is
a strong relation between the matrix A4 and the suffix
array of T. This relationship is a central concept in the
design of the FM-index. The matrix .h4 has also other
remarkable properties; to illustrate them we introduce
the following notation:

• for c 6 ~ let C[c] denote the total number of occur-
rences in T of the characters which are alphabeti-
cally smaller than c.

• for c 6 ~ let Occ(c, k) denote the number of occur-
rences of c in the prefix L[1, k] of the transformed
text L.

As an example, in Fig. 1 we have C[s] : 8 and

270

Occ(s, 10) = 4. The following properties of .M have
been proven in [5]:

a. Given the i th row of M , its last character L[i]
precedes its first character F[i] in the original
text T.

b. Let LF(i) = C[L[i]] + Occ(L[i], i). The character in
the first column F corresponding to L[i] is located
in position LF(i) . For example, in Fig. 1 we
have LF(10) = C[s] + Occ(s, 10) = 12. Indeed,
both L[10] and F[12] correspond to the first s
in m i s s i s s i p p i . We call LF(.) the LF-mapping
(Last-to-First column mapping).

c. If T[k] is the i th character of L then T[k - 1] =
L[LF(i)]. For example, in Fig. 1 T[3] is the
10th character of L and we correctly have T[2] =
L[LF(IO)] = L[12] = i.

The FM-index consists of a compressed represen-
tation of the transformed string L together with some
auxiliary information. We point out that from the com-
pressed representation of L, it is possible to get back
the original text T by exploiting repeatedly Proper ty c.
In the next section we describe a practical implementa-
tion of the FM-index. To help the reader in following
the description we now give a high level overview of the
two basic search procedures supported by the FM-index:
count and locate.

Procedure count takes as an input a pat tern P[1,p]
and returns the number of occurrences of P in T. count
exploits two nice structural properties of the matr ix
.M: (i) all the suffixes of the text T[1,u] prefixed by
a pat tern P[1,p] occupy a contiguous set of rows of
M; (ii) this set of rows has starting position sp and
ending position ep, where sp is the iexicographic position
of the string P among the ordered rows of .A4. count
determines the positions sp and ep via p phases, each
one preserving the following invariant: At the i-th phase,
the parameter sp points to the first row of M prefixed
by P[i,p] and the parameter ep points to the last row of
.A4 prefixed by P[i,p] (see the pseudo-code in Fig. 2).
After the final phase, sp and ep will delimit the portion
of .M containing all the text suffixes prefixed by P. The
integer (ep - sp + 1) will therefore account for the total
number of occurrences of P in T. For example, in Fig. 1
for the pat tern P = s± we have sp = 9 and ep = 10
for a total of two occurrences. In [10] it is shown how
to compute Occ(c,k) in constant time, so computing
count(P[1, p]) takes O(p) t ime in the worst case.

Procedure locate takes as an input the index i
of a row of the matr ix .h4 and returns the start ing
position in T of the suffix corresponding to .hi[i] (in
the following we write pos(i) to denote such a position).

A l g o r i t h m count(P[1, p])

1. i = p, c = P[p], sp = C[c] + 1, ep = C[c + 1];

2. wh i l e ((sp _< ep) a n d (i _> 2)) do

3. c = P [i - 1];

4. sp = C[c] + Occ(c, sp - 1) + 1;

5. ep = C[c] + Occ(c, ep);

6. i = i - 1 ;

7. i f (ep < sp) th en return "not found" else return
"found (e p - sp + 1) occurrences".

Figure 2: Algorithm count for computing the number of
occurrences of P[1,p] in T[1, u].

For example in Fig. 1 we have pos(3) = 8 since .M[3] =
i p p i # m i s s i s s and T[8, 11] = i pp i .

If one wants to compute the positions of all occur-
rences of a pa t tern P[1,p] it suffices to call locate(i) for
i = s p , . . . , e p where sp, ep are the row indexes com-
puted by count. The basic idea described in [10] for
computing locate(i) is the following. We logically mark
a suitable subset of the rows of At. For these marked
rows we keep explicitly their positions in T. Therefore,
if i is a marked row pos(i) is directly available. If i is
not marked, the procedure locate uses the LF-mapping
and Proper ty e above to find the row il corresponding
to the suffix T[pos(i) - 1, u]. This procedure is i terated
v times until we reach a marked row iv for which pos(iv)
is available; then we set pos(i) = pos(iv) + v. Because
of Proper ty b each LF-mapping computat ion requires a
call to the Occ procedure and a table lookup. Hence an
effective implementation of Occ and a proper marking
strategy are the key ingredients for a fast locate. In [10]
two different marking strategies are described. The first
one is simpler and yields a O(log 2 u) t ime implementa-
tion for locate. The second strategy is more complex
but significantly faster: it yields a O(log e u) t ime imple-
mentat ion for locate for any fixed e > 0.

3 A n imp lemen ta t io n of the F M - i n d e x

In this section we describe an implementation of the
FM-index. Our implementat ion is based on ideas in-
troduced in [10], but in some points we use techniques
which work well in practice rather than more cum-
bersome techniques with guaranteed good asymptot ic
worst case behavior. The implementation described
here will be extensively tested in Section 4.

We have seen in the previous section that for
an efficient implementation of the count and locate
procedures it is important to be able to efficiently

271

compute the value Occ(c,k), that is, to count the
number of occurrences of the character c in the prefix
L[1, k]. To this end, we parti t ion the string L into
superbuckets of size ~sb. Each superbucket is in turn
parti t ioned into buckets of size lb (clearly gb divides
~sb). For each superbucket we store a table containing
for each character c E E the number of its occurrences
since the beginning of the string L. In other words, for
the superbucket Si we store the number of occurrences
of c in S 1 , S 2 , . . . , S i - 1 . Similarly, for each bucket
we store the number of occurrences of every character
since the beginning of its superbucket. Using this
auxiliary information we can easily compute the number
of occurrences of any given character from the beginning
of L up to the beginning of a bucket. In order to
efficiently compute the number of occurrences inside a
bucket, instead of compressing the string L as a single
unit, we compress each bucket separately.

Summing up, the overall structure of the FM-index
is the following:

• The superbuckets section which contains for each
superbucket the number of occurrences of every
character in the previous superbuckets.

• The bucket directory which contains the start ing
position of each compressed bucket in the body of
the FM-index.

• The body of the FM-index which contains the
compressed image of each bucket. The compressed
image of each bucket includes an header containing
the number of occurrences of each character since
the beginning of the superbucket.

Given the above structure, in order to compute
Occ(c,k) we first locate (using the bucket directory)
the s tar t ing position of the bucket Bi containing L[k].
Then, we decompress Bi and count the number of
occurrences of c from the beginning of the bucket up
to L[k]. Then, from the bucket header we get the
number of occurrences of c since the beginning of the
superbucket. Finally, from the superbucket section we
get the number of occurrences of c since the beginning
of L.

In the above description we did not mention the
actual size of buckets and superbuckets, neither the
algorithm used to compress the single buckets. In [10]
these parameters have been set to achieve effective
worst case bounds. Here the choice has been made
on an experimental basis and is therefore discussed in
Section 4.

We have already observed that the string L is
usually locally homogeneous, tha t is, if we look at
a small portion of it we will likely see only a few
distinct characters. We have taken advantage of this

property as follows. For each (super)bucket we store a
b i tmap of the characters occurring in it. These bi tmaps
make it possible to quickly detect if a given character
occurs in a certain (super)bucket thus possibly speeding
up the computat ion of Occ(c,k). Additionally, these
bi tmaps allow to reduce the cost of storing the auxiliary
information described above; for example the header of
a bucket is restricted to the characters occurring in its
superbucket.

The final point to be discussed is how we select
and mark a subset of the rows of .A.4 as required by
the procedure locate. Our first design decision on this
issue has been to let the user choose the fraction f of
the rows to be marked. Our second decision has been to
use a marking s t rategy different from the one described
in [10]. Since we are mainly interested in indexing text
collections, we decided to take advantage of the fact
that the occurrences of each character in these texts are
roughly equally spaced. Therefore, when we construct
the index we select one single character, say c, which
occurs with frequency close to f . Then, all the rows
in .A4 whose last character is c are logically marked
and the start ing positions in T of their corresponding
suffixes are stored in an array P in the order they occur
in .A4. In particular if row j ends with c, then the
position pos(j) of the corresponding suffix will be stored
in the entry Occ(c, j) of "P. At search time the Jocate
procedure computes pos(i) as follows. If L[i] = c then
pos(i) = P[Occ(c,i)]. Otherwise (i.e. if L[i] ~ c) the
Jocate procedure iterates the LF-mapping v times until
it reaches a row iv whose last character is c (i.e. Lily] =
c). Then locate returns pos(i) = P[Occ(c, iv)] + v.

I t goes without saying tha t this marking strategy
heavily relies on the s t ructure of the text and does
not ensure good performances in the worst case, as in-
stead guaranteed by the theoretical approach of [10].
Nonetheless the simplicity of this marking strategy, its
reduced space overhead, and the expected regular struc-
ture of the indexed texts, drive us to think favorably of
thi's scheme; its actual performance will be investigated
and commented in the next section.

4 E x p e r i m e n t i n g the F M - i n d e x

The implementat ion of the FM-index described in the
previous section contains several parameters: the size
of buckets and superbuckets, the algorithm used for the
compression of the buckets, the frequency of the marked
characters, etc.. In this section we describe the results
of an extensive set of experiments aimed at investigating
the role played by each one of these parameters . We also
compare the performance of the FM-index with those
of other compressors and of the suffix array. We ran all
the experiments on a machine equipped with a 600Mhz

272

Pentium III processor with 512Kb L2 cache, 1 Gb RAM,
and a 9.1 Gb SCSI hard disk. The operating system was
Gnu/Linux Debian 2.2.

We point out that searching in the FM-index re-
quires at run time a very small amount of internal mem-
ory. In fact, we access one bucket at a time (via the
f s e e k / f r e a d procedures) and therefore we need a con-
stant amount of internal memory independent of the
size of the indexed text.

Table 1 reports the files used in our experiments.
We also made use of truncated versions of the file apgO:
we write ap90-N to denote the file consisting of the first
N Megabytes of apgO.

C o m p r e s s i o n o f bucke t s . We have tested four dif-
ferent algorithms for the compression of single buck-
ets. From the simplest to the most complex they are:
Unary coding (see [9, Sect. 7.1]), Hierarchical 3-level
coding (see [9, Sect. 7.2]), Arithmetic coding [25], and
Huffman coding with multiple tables (following the im-
plementation of [22]). After a few preliminary tests we
discarded Unary coding and Arithmetic coding which
turned out to be slower and less efficient in compression
than, respectively, Hierarchical coding and Multiple Ta-
bles Huffman coding (MTH coding from now on). For
this reason in the following we report the results only
for Hierarchical coding, which is the fastest algorithm,
and MTH coding, which compresses better.

Size o f s u p e r b u c k e t s . It should be clear from the de-
scription in Section 3 that the purpose of superbuckets
is to reduce the amount of auxiliary information stored
in each bucket (in each bucket we store, for each char-
acter, its number of occurrences from the beginning of
the superbucket, rather than from the beginning of the
file). Since each superbucket introduces some overhead
of its own, in our first test we have tried to determine
which is the optimal ratio between the size of buckets
and superbuckets. Table 2 reports the results of our ex-
periments. We see that this ratio does not significantly
influence the average time of count and locate opera-
tions. We also see that very large or very small ratios
yield a poor overall compression. However, there is a
large range of ratios which yield a compression close to
33% (that is, the size of the FM-index is roughly one
third of the original text size). In view of these results,
in the rest of our experiments we will choose the sizes
of buckets and superbuckets so that their ratio is 1:16.

Size o f bucke t s . Intuitively, the finer is the bucket de-
composition, the faster is the decompression of a single
bucket and the worse should be the overall compres-
sion because of the larger auxiliary information kept
at bucket level. Since the count and locate operations
need to decompress several buckets (one bucket is de-

compressed at each call of the subroutine Occ, see Sec-
tion 3), we would like to set the bucket size as small
as possible; on the other side, in order to improve the
compression ratio we would like to increase the bucket
size to reduce the number of buckets and hence min-
imize the overall auxiliary information kept for them.
Table 3 shows that there is a trade-off between com-
pression ratio and search speed so that the choice of the
appropriate bucket size clearly depends on the resource
the end-user wishes to minimize.

From the results in Table 3 we see that for a fixed
bucket size Hierarchical coding induces smaller average
times for count and locate operations, whereas MTH
coding compresses better. However, for a fair compar-
ison it is natural to ask which is the fastest algorithm
when the resulting FM-index requires a similar space
occupancy. In this setting the MTH coding strategy ap-
pears to be superior. In fact the FM-index based upon
Hierarchical coding needs to use buckets of size 8Kb in
order to achieve a compression similar to the one ob-
tained by the index based upon MTH coding with 1Kb
buckets. But MTH coding with 1Kb buckets is faster in
both the count and locate operations (in both cases by
a factor roughly 2.5). In other words, the space saved
by MTH coding in the compression of the single buck-
ets makes it possible to use smaller buckets (i.e. to
increase the amount of auxiliary information), and this
more than compensate the slower decompression speed
of MTH coding. The net result is thus a faster search-
ing algorithm. For this reason in the following we focus
only on the FM-index built using MTH coding.

Percentage o f m a r k e d c h a r a c t e r s . This parameter
clearly introduces a trade-off between compression and
searching speed: the larger is the number of marked
characters, the bigger is the space required for storing
their positions, the smaller is the number of LF-steps
required for a locate operation. Of course count is not
affected by the value assigned to this parameter since it
does not use marked characters.

Table 4 reports the performance of the FM-index
built using MTH coding and different bucket sizes and
percentages of marked characters. Although we do not
have sufficient data to draw a general rule, our results
suggest that it is preferable to use small buckets. For
example, the index built upon 1Kb buckets and 2%
marked characters is more compact and supports faster
searches than the index with 8Kb buckets and 5% of
marked characters.

R o b u s t n e s s of the F M - i n d e x . Our next set of
experiments are designed to test the performances of
the FM-index on different types of input files. We
have built the FM-index for all files in Table 1 using

273

Name Size Content Name Size Content
bible 4,047,392 King James Bible cantrbry 2,821,120 Canterbury corpus
e.coli i 4,638,690 DNA sequence apgO 67,108,864 SGML-tagged text

.. world192 ! 2,473,400 1992 CIA world fact book . jdkl3 69,872,170 i html and java sources

Table 1: Files used in our experiments. The files bible, e.coli, world192 are from the Canterbury Corpus [2]. The
file cantrbry is a tar archive containing the small files of the Canterbury Corpus. It includes both binary files
and text files in various formats (plain text, html, c, and lisp code). The file ap90 consists of the first 64Mb
of the concatenation of the files ap9OMMDD.txt from the TREC collection [13]. The file jdk13 consists of the
concatenation of the . j ava and .html files from the Java Jdk 1.3 documentation.

Superbucket size 2Kb 4Kb 8Kb 16Kb 32Kb 64Kb 128K 256Kb 512Kb 1024Kb 4096Kb
Compression ratio 41.04 35.45 33 .05 32.28 32.34 32.89 33.64 34.68 36.06 37.47 41.16
Ave. count time 1.3 0.9 1.2 1.1 1.1 1.4 1.0 1.0 1.0 1.4 1.2
Ave. locate time 8.6 8.7 8.7 8.7 8.8 8.8 8.9 9.0 8.9 ! 8.7 7.5

Table 2: Compression ratio (percentage), and average time (milliseconds) for the count and locate operations as
a function of the superbucket size. The FM-index was built for the file bible using MTH coding, marking 2% of
the input characters and adopting buckets of 1Kb. In each test, we searched 100 randomly chosen English words
of length between 4 and 8, for a total of 100 count operations and 1,614 locate operations. We have repeated the
same set of experiments using the file ap90-8 obtaining a similar behavior.

MTH coding bible ap90-8
Bucket size 1Kb 2Kb 4Kb 8Kb 1Kb 2Kb 4Kb 8Kb
Compression ratio 32.28 29 .35 27.63 26.57 38.67 34.77 32 .44 30.98
Ave. count time 1.0 1.6 2.5 4.1 1.7 2.4 3.5 6.1
Ave. locate time 7.5 10.8 17.2 29.6 5.4 7.7 12.0 20.5

Hierarchical coding bible " ap90-8

Bucket size 1Kb 2Kb i 4Kb 8Kb 1Kb 2Kb I 4Kb 8Kb
Compression ratio 40.08 37.64 I 36.27 35.49 48.00 44.71 ! 42.84 41.79
Ave. count time 0.9 1.1 i 1.5 2.5 1.2 1.7! 2.3 4.1
Ave. locate time 5.8 7.9 I 12.3 20.7 4.3 5.8 i 8.8 14.8

Table 3: Compression ratio (percentage) and average time (milliseconds) for the count and locate operations as a
function of the bucket size. The first table refers to the FM-index built using MTH coding, the second one refers
to Hierarchical coding. Each test consisted in searching 1,000 randomly chosen English words of length between
4 and 8. The total number of locate operations in each test was 24,434 for bible and 55,501 for ap90-8. In all tests
the FM-index was built marking 2% of the input characters.

bible
Bucket size 1Kb 2Kb 4Kb

1% Compression ratio 29.54 26.61 24.89
Ave. locate time 15.0 21.7 34.7

2% Compression ratio 32.28 29 .35 27.63
Ave. locate time 7.5 10.8 17.2

5% Compression ratio 40 .25 37 .32 35.60
Ave. locate time 2.9 4.1 6.6

10% Compression ratio 53.70 50 .77 49.06
Ave. locate time 1.3 1.9 3.0

8Kb
23.89

59.5
26.57

29.6
34.54

11.3
47.99

5.1

ap90-8
1Kb 2Kb 4Kb 8Kb

35.71 31 .81 29.48 28.02
15.6 22.1 34.7 58.8

38.67 34.77 32.44 30.98
5.4 7.7 12.0 20.5

46.67 42.77 40.43 38.98
3.6 5.1 8.0 13.7

58.25 54 .35 52.02 50.56
1.9 2.7 4.3 7.3

Table 4: Compression ratio (percentage) and average time (milliseconds) for a locate operation as a function of
bucket size and percentage of marked characters. Each test consisted in searching 1,000 randomly chosen English
words of length between 4 and 8. The total number of locate operations in each test was 24,434 for bible and
55,501 for apgO-8. In all test the FM-index was built using MTH coding. The percentage of marked characters
is given in the first column.

274

MTH coding, setting the bucket size to 1Kb, and
marking 2% of the input characters. We emphasize that
these were arbitrary choices (even if reasonable ones)
since our previous experiments show that , depending
on the application, other parameters could be more
appropriate.

Table 5 summarizes the results of our tests. The
first point to be noted is that the data for the files
ap90-N show that the searching time is not significantly
influenced by the size of the input file. In addition,
for most of the files the average count and locate time
have similar values, the only exception being the average
Jocate time in jdk13. We believe that the reason for
this exception resides in the simple marking technique
described in Section 3 which does not work well for
this file. The assumption that the occurrences of a
given character are evenly distributed in the input file
is probably not valid for jdk13 which consists of .html
and . j a va files.

F M - i n d e x vs g z i p / b z i p . We have compared the
compression ratio and the (de)compression speed of
the FM-index with those of gzip (the standard Unix
compressor) and bzip2 (the best known compressor
based on the BWT, see [22]). We have considered
two versions of the FM-index: a "fat" index with 1Kb
buckets and 2~0 marked characters (its performance is
the one reported in Table 5) and a "tiny" index with
8Kb buckets and no marked characters (the tiny index
supports only the count operation which takes about 6
milliseconds on average).

From the results in Table 6 we see that the tiny
FM-index takes significantly less space than the cor-
responding gzip compressed file. In addition, for all
files except bible and cantrbry, the tiny FM-index com-
presses better than bzip2. This may appear surprising
since bzip2 is also based on the BWT and MTH cod-
ing. The explanation is that the FM-index computes
the B W T for the entire file whereas bzip2 splits the in-
put in 900Kb blocks. This compression improvement is
payed in terms of speed; the FM-index is slightly slower
than bzip2 in both compression and decompression, the
difference being more noticeable for larger files.

We have already observed that the FM-index in-
cludes the compressed text as well as some auxiliary
information for supporting the count and locate oper-
ations. The comparison of the "tiny" FM-index with
bzip2 shows that the auxiliary information used by count
is negligible for proper bucket sizes. On the other side,
the "fat" FM-index performs slightly worse than gzip
but supports both count and locate.

T h e F M - i n d e x as a c o m p r e s s e d d i c t i o n a r y . We
now investigate the behavior of the FM-index in

Dictionary-based applications. This setting is interest-
ing because it allows to exploit the best algorithmic
feature of the FM-index, namely the effective count op-
eration. Here the number of retrieved occurrences is
usually small, and possibly one single word must be re-
trieved. Examples of applications are spell checkers,
virus detectors and personal file-systems search tools.

The literature about space-efficient implementa-
tions of tries is huge. Classical list-based or array-based
implementations of tries are unacceptable because they
require too much space [14]. Hash-based implementa-
tions although elegant and compact, do not have guar-
anteed performance in time and space occupancy (see
e.g. [7]). Succinct representations of tries supporting
fast search operations in the worst case have been re-
cently introduced in the theoretical setting (see [20] for a
survey). However, their space occupancy is still linear in
the input text length and their actual performance have
been not yet experimented. Consequently, the main ref-
erence for whom is interested in storing a dictionary of
arbitrary strings and perform fast (prefix-)word searches
is the ternary search tree (TST) [4]. We therefore com-
pared our FM-index against TST on two dictionaries:
us.dic and ap90.dic of size about 1Mb and 11Mb, re-
spectively. Unlike all the other experiments, for a fair
comparison we ran here an internal-memory version of
the FM-index. Table 7 shows that TS T is faster by
a factor in the range [180, 233] than the FM-index in
checking the presence of a (prefix-)word. However, the
space occupied by TST is about 15 times larger than
the space required by the FM-index.

T h e F M - i n d e x as a fu l l - t ex t i n d e x i n g too l . We
compare the FM-index against four known search-
ing/indexing tools: grep, zgrep (i.e. grep over gzipped
files), bgrep (i.e. grep over bzipped files) and the suffix
array. The first three tools are scan-based algorithms
which fully scan the compressed or uncompressed text.
Clearly the space occupancy depends on the adopted
compression scheme (if any), and unlike the FM-index,
the time for listing all pattern occurrences is not in-
fluenced by their number but grows linearly with the
length of the searched text. Therefore a direct compari-
son between the FM-index and these scan-based tools is
unfair. Nonetheless from Table 8 we may estimate the
maximum number of occurrences that can be retrieved
through the FM-index faster than a full-text scan ap-
proach. This number is highly variable and depends on
the text structure and length. For example, on ap90-
8 in the time taken by zgrep the FM-index can locate
roughly 130 pattern occurrences.

A comment is in order at this point. An attentive
reader may find surprisingly high the time gap between
zgrep/bgrep and grep. We investigated this phenomenon

275

File ' bible e.coli world i cantrbry jdk13 apgO-8 ap90-16 ap90-321 ap90
[=M Compr. ratio 32.28 33 .61 33.23 46.10 2 1 . 4 1 38.67 37.43 36.36 : 35.49
index Ave. count time 1.0 2.3 1.5 2.7 2.6 1.7 1.7 1.7 1.6

Ave. locate time 7.5 7.6 9.4 7.1 32.8 [5.4 , 5.3 5.5 5.3

Table 5: Compression ratio (percentage) and average search time (milliseconds) for the FM-index on different
types of input files. Each test consisted in searching 1,000 randomly chosen English words of length between 4
and 8 (for e.coli we used random DNA sequences of length between 8 and 15). In all tests the FM-index was built
using 1Kb buckets compressed with MTH coding and marking 2% of the input characters.

File
[=M-index Compression ratio
(tiny) Construction time

Decompression time
[=M-index Compression ratio
(fat) Construction time

Decompression time
bz ip2 Compression ratio

Compression time
Decompression time

gzip Compression ratio
Compression time
Decompression time

bible e.coli world cantrbry jdk13 ap90-8 ap90-16 ap90-32 ap90
21.09 26.92 19.62 24.02 6.94 25.06 23.93 22.96 22.14
2.24 2.19 2.26 2.21 3.48 2.49 2.64 2 .81 3.04
0.45 0.49 0.44 0.38 0.42 ' 0.48 0.50 0.52 0.57

!

32.28 33.61 33.23 46.10 21 .41 38.67 37.43 36.36 35.49
2.28 2.17 2.33 2.39 3.51 2.59 2.74 2.88 3.10
0.46 0.51 0.46 0.41 0.44 0.51 0.52 0.55 0.59

20.90 26.97 19.79 20.24 7.23 27.38 , 27.33 27.32 27.36
1.16 1.28 1.17 0.89 1.52 1.16 i 1.17 1.16 1.16
0.39 0.48 0.39 0.31 0.28 0.43 ' 0.43 0.43 0.43

29.07 28.00 29.17 26.10 10 .97 37.21 37.28 37.31 37.35
1.74 10.48 0.87 5.04 0.39 0.96 0.97 0.97 0.97
0.07 0.07 0.06 0.06 0.04 0.07 0.07 0.07 0.07

Table 6: Compression ratio (percentage) and (de)compression speed (microseconds per input byte) of the FM-
index compared with those of gzip (with option -9 for maximum compression) and bzip2 (version 1.0.1). The
"fat" FM-index uses 1Kb buckets and 2% marked characters, whereas the "tiny" FM-index uses 8Kb buckets and
no marked characters.

' Dictionary us. dic ap90. dic Dictionary us. dic ap90. dic
TST Compression ratio 569.72 615.50 FM-index [Compression ratio 41.47 39.64

Ave. search time 0.005 0.006 I Ave. search time 0.9 1.4

Table 7: Compression ratio (percentage) and average search time (milliseconds) for Ternary Search Trees and
FM-index (built using MTH coding, 1Kb buckets, and no marked characters). The dictionary us.dic contains
118,619 words and comes from the winedt distribution (ftp.dante.de/tex-archive/systems/win32/winedt/dict/us.zip).
The dictionary apgO.dic contains 890,026 words extracted from the ap90 file. Each test consisted in building the
FM-index (or TST) for the dictionary and in searching 10,000 randomly chosen English words of length between

4 and 8.

File bible e.coli world cantbry jdk13
FM Compr. ratio 32.28 33.61 33.23 46.10 21.41
index Ave. count time 1.0 2.3 1.5 2.7 2.6

Ave. locate time 7.5 7.6 9.4 7.1 32.8
Compr. ratio 29.07 28.00 2 9 . 1 7 26.10 10.97

zgrep Ave. search time 343.8 33,642.6 2 1 3 . 4 516.9 3,869.6
Compr. ratio 20.90 26.97 1 9 . 7 9 20.24 7.23

bgrep Ave. search time 1,619.3 39,644.4 1,012.4 1,189.6 19,944.9
Compr. ratio 100.00 100 .00 100.00 100.00 100.00

grep Ave. search time 40.9 96.8 26.0 32.3 617.3
suffix Compr. ratio 375.00 387.50 375.00 375.00 437.50
array Ave. search time 0.5 0.6 0.5 0.5 1.0

ap90-8 ~ ap90-16
38.67 37.43

1.7 1.7
5.4 5.3

37.21 37.28
744.1 1,468.8
27.38 27.33

3,693.1 7,381.7
100.00 100.00

79.3 154.5
400.00 412.50

0.7 0.8

ap90-32 ap90
36.36 35.49

1 .7 1.6
5 .5 5.3

37.31! 37.35
2,939.0 5,854.7

27.32 27.36
14,718.0 29,480.8

100.00 100.00
302.4 597.2

425.00 437.50
1.1 1.6

Table 8: Compression ratio (percentage) and average search time (milliseconds) of the FM-index compared with
other searching/indexing tools. Each test consisted in searching 1,000 randomly chosen English words of length
between 4 and 8 (for e.coli we used random DNA sequences of length between 8 and 15). The FM-index was
built using 1Kb buckets compressed with MTH coding and marking 2% of the input characters. The search time
for zgrep, bgrep and grep refers to the overall cost of the scanning of the input file (compressed or uncompressed).
The search time for the suffix array accounts for the cost of retrieving all pattern occurrences.

2 7 6

and found that such a gap cannot be justified by the
additional uncompression step, but it is associated with
the use of the Unix pipe (i.e. the command I) in zgrep
and bgrep.

Table 8 also shows tha t the suffix array is incredibly
fast in supporting the locate operation (the position of
an occurrence is directly available), but require a large
space occupancy, a factor in the range [8, 13] more than
the FM-index.

5 Concluding remarks

As a future research we plan to investigate and im-
plement new marking strategies which are simple and
whose performance do not degenerate with biased dis-
tributions of the characters in the indexed text. This
would make the locate procedure less sensitive to the
text structure. Another interesting issue is the exten-
sion of the search procedure to more complex queries,
like approximate matches and regular expression search-
ing. We believe that the structural properties of the
FM-index may allow to easily adapt the algorithms
known for the suffix array [11]. Finally, we are cur-
rently implementing a text retrieval system based on
the combination of Glimpse [17] and the FM-index by
following the ideas detailed in [10].

R e f e r e n c e s

[1] A. Amir, G. Benson, and M. Farach. Let sleeping files
lie: Pattern matching in Z-compressed files. Journal of
Computer and System Sciences, 52(2):299-307, 1996.

[2] R. Arnold and T. Bell. The Canterbury corpus home
page. http ://corpus. canterbury, ac. nz.

[3] J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally
adaptive compression scheme. Communication of the
ACM, 29(4):320-330, 1986.

[4] J. L. Bentley and R. Sedgewick. Fast algorithms for
sorting and searching strings. In Proceedings of the 8th
A CM-SIAM Symposium on Discrete Algorithms, pages
360-369, 1997.

[5] M. Burrows and D. Wheeler. A block sorting lossless
data compression algorithm. Technical Report 124,
Digital Equipment Corporation, 1994.

[6] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi.
Text compression using antidictionaries. In Proc. of
International Colloquium on Automata and Languages
(ICALP '99), pages 261-270. Springer Verlag LNCS
n. 1644, 1999.

[7] J. J. Darragh, J. G. Cleary, and I. H. Witten. Bonsai:
a compact representation of trees. Software--Practice
and Experience, 23(3):277-291, March 1993.

[8] M. Farach and M. Thorup. String matching in Lempel-
Ziv compressed strings. Algorithmica, 20(4):388-404,
1998.

[9] P. Fenwick. The Burrows-Wheeler transform for block
sorting text compression: principles and improve-
ments. The Computer Journal, 39(9):731-740, 1996.

[10] P. Ferragina and G. Manzini. Opportunistic data
structures with applications. In Proceedings of the
41st IEEE Symposium on Foundations of Computer
Science, 2000.

[11] G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. In-
formation Retrieval: Data Structures and Algorithms,
chapter 5, pages 66-82. Prentice-Hall, 1992.

[12] R. Grossi and J. Vitter. Compressed suffix arrays
and suffix trees with applications to text indexing and
string matching. In Proceedings of the 32nd A CM
Symposium on Theory of Computing, 2000.

[13] D. K. Harman, editor. Proc. TREC Text Retrieval
Conference. National Institute of Standards, 1992.
Special Pubblication 500-207.

[14] D. E. Knuth. Sorting and Searching, volume 3 of
The Art of Computer Programming. Addison-Wesley,
Reading, MA, USA, second edition, 1998.

[15] V. Makinen. Compact suffix array. In Proceedings of
the 11th Symposium on Combinatorial Pattern Match-
ing, pages 305-319. Springer-Verlag LNCS n. 1848,
2000.

[16] U. Manber and G. Myers. Suffix arrays: a new
method for on-line string searches. SIAM Journal on
Computing, 22(5):935-948, 1993.

[17] U. Manber and S. Wu. GLIMPSE: A tool to search
through entire file systems. In Proceedings of the
USENIX Winter 1994 Technical Conference, pages 23-
32, 1994.

[18] E. Moura, G. Navarro, and N. Ziviani. Indexing
compressed text. In N. Ziviani, R. Baeza-Yates, and
K. Guimar~es, editors, Proceedings of the 4th South
American Workshop on String Processing. Carleton
University Press, 1997.

[19] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-
Yates. Fast searching on compressed text allowing
errors. In Proceedings of the glst International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 298-306, 1998.

[20] J. I. Munro. Succinct data structures. In Proceeding of
the 19th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science. Springer-
Verlag LNCS n. 1738, 1999.

[21] K. Sadakane. Compressed text databases with efficient
query algorithms based on the compressed suffix array.
In Proceeding of the 11th International Symposium on
Algorithms and Computation (ISAAC '00). Springer-
Verlag LNCS, 2000.

[22] J. Seward. The nzlP2 home page, 1997.
http : / /sourceware. cygnus, com/bzip2/index, html.

[23] Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa.
Pattern matching in text compressed by using antidic-
tionaries. In M. Crochemore and M. Paterson, editors,
Proceedings of the lOth Symposium on Combinatorial
Pattern Matching, pages 37-49. Springer-Verlag LNCS
n. 1645, 1999.

277

[24] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann Publishers, Los Altos, CA
94022, USA, second edition, 1999.

[25] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic
coding for data compression. Communications of the
ACM, 30(6):520-540, June 1987.

278

